

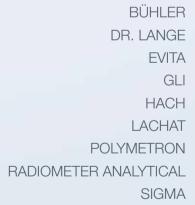
¡Bienvenido!

"¡Todo es flujo!" En otros términos, todo fluye. A decir verdad, esto es evidente en el análisis de aguas cotidiano. Nuevas demandas y tecnologías nos estimulan continuamente para desarrollar nuevas y mejores soluciones para los problemas que Usted afronta en la analítica diaria. La prueba la tiene en sus manos. En nuestro nuevo catálogo podrá encontrar:

- Una amplísima selección de métodos fotométricos para el laboratorio, con los nuevos fotómetros DR 2800 y DR 5000
- Fiabilidad de medida y flexibilidad extraordinarias para pH y oxígeno con los nuevos sistemas
 HQD digitales
- La enorme gama de aplicaciones de los nuevos analizadores de TOC automáticos de laboratorio
- Soluciones óptimas con los nuevos analizadores de proceso para los parámetros N y P
- El nuevo e innovador sistema de telemetría para la tecnología de medida de proceso
- Nuevas soluciones integrales para controlar la calidad de las aguas superficiales

¡Todo esto y más - véalo Usted mismo!

Su equipo de análisis de aguas



CONTENIDO

Introducción Capítulo 1 Parámetros, agua residual, agua potable, agua de proceso, servicio, calidad del agua _ _ Página 4 _ Análisis de laboratorio Capítulo ÍNDICE _ 2 Página 16_ Las soluciones de HACH LANGE para 3 laboratorio aseguran pH, O₂, CONDUCTIVIDAD __ Página 18 _ el control fiable de los 4 valores límite en la FOTOMETRÍA _ Página 29 _ analítica del agua en 5 municipios, organismos REACTIVOS_ Página 41 _ reguladores y sectores 6 industriales – también DBO, MICROBIOLOGÍA ___ Página 68 _ in situ. 7 TURBIDEZ _ Página 73 _ ACCESORIOS _____ Página 77 _ 8 Automatización de laboratorios Capítulo Soluciones de HACH AUTOMATIZACIÓN DE LABORATORIOS _ 9 Página 83 _ LANGE para la analítica en serie automatizada. **Tomamuestras** Capítulo Soluciones de HACH TOMAMUESTRAS _ Página 91_ 10 LANGE para el muestreo fijo y portátil. Sistemas de control de proceso Capítulo ÍNDICE_ Las soluciones de 11 HACH LANGE para 12 proceso controlan los CONTROLADORES_ Página 96 ___ sistemas de trata-13 miento del agua TURBIDEZ, SÓLIDOS EN SUSPENSIÓN Y FANGOS ___ Página 101 __ potable y los sistemas 14 de depuración de pH, O₂, CONDUCTIVIDAD_ Página 111 ___ aguas residuales -15 dando como resultado NUTRIENTES _ Página 121 __ costes de explotación 16 bajos y una buena TOC, SAC_ Página 135 _ estabilidad del proceso. CLORO, OZONO __ 17 Página 139 __ 18 OTROS PARÁMETROS ___ Página 141 __ 19 CAUDAL __ Página 142 _ KITS DE MONTAJE Página 144 _ 20 Índices Capítulo Página 146 _ 21 Contacto, índice de parámetros, índice de productos _

Soluciones prácticas -Parámetro a parámetro

Diversos parámetros sirven como indicadores de la calidad del agua, en función del origen y el uso previsto para la misma. El análisis de esos parámetros también depende del uso posterior que se da a los valores medidos. La gama de productos de HACH LANGE cubre el abanico completo de parámetros relevantes para el análisis de aguas.

O2, pH, conductividad

La concentración de oxígeno disuelto influye más que ningún otro parámetro en la depuración biológica de las aguas residuales. Determinarla de forma precisa es por lo tanto de capital importancia, tanto desde el punto de vista técnico como económico. Los valores de pH y redox del agua residual y del agua potable son esenciales para la determinación de otros muchos parámetros y pasos del proceso. La conductividad del agua proporciona información acerca de su contenido en sales.

En vista de la importancia de estos parámetros, HACH LANGE ha desarrollado una extensa gama de productos basándose en unas tecnologías avanzadas excepcionales.

- → Análisis de laboratorio: véase la página 16
- → Sistemas de control de proceso: véase la página 95

Turbidez y fangos

El agua depurada es el objetivo del tratamiento del agua residual y del agua potable. Los sólidos en suspensión y las partículas tienden a crear un producto final poco atractivo y además pueden interferir en el proceso. La determinación de la turbidez es, por consiguiente, una tarea importante. También el tratamiento de los fangos activos en el proceso de depuración de las aguas residuales necesita un cuidadoso control: con parámetros tales como concentración de sólidos, volumen de fangos, índice volumétrico de fangos y nivel de fangos, HACH LANGE cuenta con una tecnología contrastada para determinar cualquier concentración de sólidos y las principales propiedades de los fangos.

- → Análisis de laboratorio: véase la página 16
- → Sistemas de control de proceso: véase la página 95

Parámetros "suma"

DQO, TOC, SAC, DBO y AOX no proporcionan información directa sobre sustancias individuales sino que son parámetros "suma" que indican, por ejemplo, la capacidad de consumo químico o biológico de oxígeno, o la absorbancia UV del agua. Los parámetros "suma" de HACH LANGE representan soluciones perfectas y una óptima manipulación, incluyendo digestiones rápidas y contrastadas. Para el análisis de TOC, HACH LANGE ofrece desde análisis puntuales en el laboratorio hasta análisis automáticos de grandes series de muestras y análisis de proceso in situ.

- → Análisis de laboratorio: véase la página 16
- → Automatización de laboratorios: véase la página 83
- → Sistemas de control de proceso: véase la página 95

Nutrientes

Los compuestos de nitrógeno y fósforo no son tóxicos pero estimulan el crecimiento de algas en las aguas superficiales, circunstancia que provoca la reducción de oxígeno. La eliminación de amonio, nitrito, nitrato, nitrógeno total, fósforo (orto y total), desempeña, por lo tanto, un papel decisivo en los procesos de depuración de aguas residuales. En el análisis del agua potable se presta especial atención a los nitritos y nitratos como potenciales precursores de agentes cancerígenos. La analítica de nutrientes de HACH LANGE abarca todos los parámetros y utiliza métodos de digestión rápidos y eficaces.

- → Análisis de laboratorio: véase la página 16
- → Automatización de laboratorios: véase la página 83
- → Sistemas de control de proceso: véase la página 95

DW

PW

Agua residual

Soluciones a medida para el análisis de aguas residuales en depuradoras e industrias

Agua potable

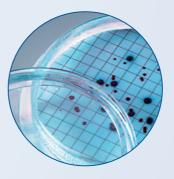
Seguridad garantizada – análisis para suministradores y usuarios

Agua de proceso

Análisis en continuo y de laboratorio para problemas analíticos especiales en aguas de proceso industrial

Cloro Met

Los desinfectantes se emplean para eliminar los microorganismos del agua potable y de las aguas de recreo. Además del cloro, se utilizan productos como el dióxido de cloro, el ozono, el yodo y el bromo. El análisis minucioso de estas sustancias no se recomienda únicamente por motivos económicos. En realidad, es indispensable porque los desinfectantes y sus productos de reacción llevan asociado un riesgo potencial a veces considerable. Desde los medidores "paddle" de evaluación visual, pasando por la analítica de laboratorio con control de calidad, hasta los analizadores para aplicaciones de control de proceso, HACH LANGE cuenta con una completa gama de productos para el análisis de desinfectantes


- → Análisis de laboratorio: véase la página 16
- → Sistemas de control de proceso: véase la página 95

Metales

En las aguas residuales pueden encontrarse muchos metales procedentes de procesos industriales; también pueden estar presentes en el agua potable como consecuencia de circunstancias geológicas y tuberías corroídas. Aunque la toxicidad de los metales varía mucho, se considera que su potencial de riesgo es muy elevado; no son biodegradables, y por lo tanto se acumulan en los sistemas de fangos activados. Por regla general, los metales se encuentran en el agua en forma compleja, por lo que para poder realizar el análisis primero hay que llevar a cabo una preparación especial de las muestras. La analítica de metales de HACH LANGE abarca todos los parámetros importantes, de aluminio a zinc pasando por cobre y níquel.

→ Análisis de laboratorio: véase la página 16

Microbiología

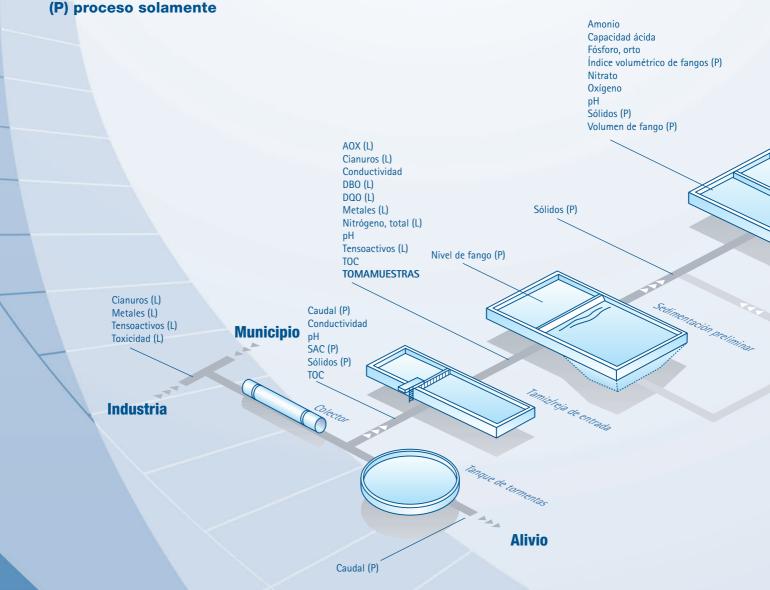
Bacterias, hongos y otros microorganismos presentes en el agua potable y en las aguas de recreo pueden ser causa de enfermedades y, en las plantas industriales, formar incrustaciones problemáticas. Los productos de HACH LANGE permiten realizar ensayos microbiológicos cuantitativos y cualitativos de superficies y aguas de acuerdo con los requisitos legales. Hay disponibles test listos para el análisis, medios y accesorios, además de diversos métodos como, p. ej., la filtración por membrana, NMP [Número más probable], P/A [Presencia/Ausencia], medidores BART y medidores "paddle". Además, el test de bacterias bioluminiscentes utiliza bacterias como herramienta para determinar la toxicidad de aguas y suelos.

→ Análisis de laboratorio: véase la página 16

Otros parámetros

Puede ser necesario analizar unos parámetros especiales en el agua por muchas razones, como puede ser el control de un proceso o de un valor límite especificado legalmente; cianuros o tensoactivos en las aguas residuales industriales; ácidos orgánicos en los tanques de aireación, fermentadores de biogás y digestores; dureza en el agua potable; cloruro, sulfato y sílice en los sistemas de tratamiento de agua; valores de medida de color como Hazen, Gardner y Yodo en el control de calidad industrial, y muchos más. HACH LANGE puede suministrar una gama completa y bien desarrollada de productos para diversos parámetros y necesidades.

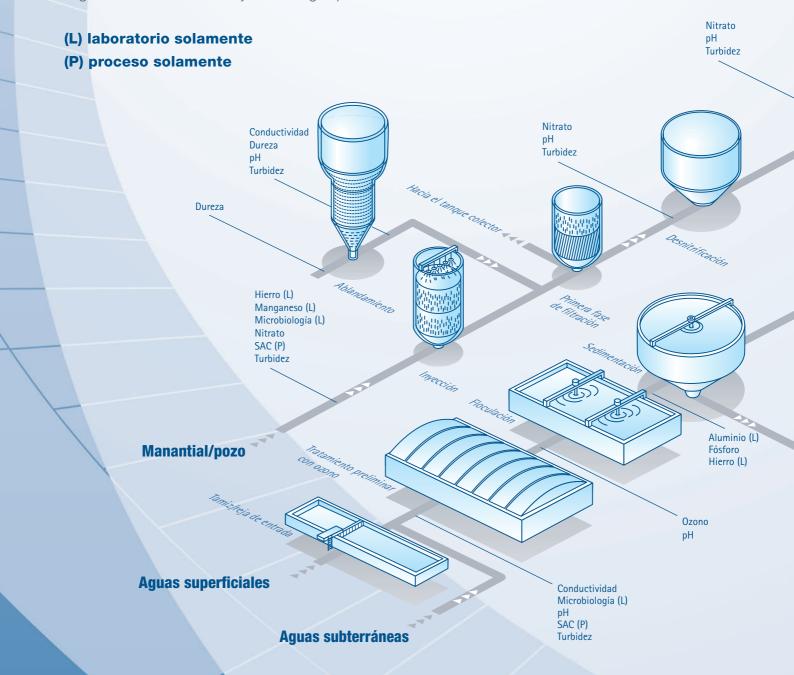
- → Análisis de laboratorio: véase la página 16
- → Sistemas de control de proceso: véase la página 95

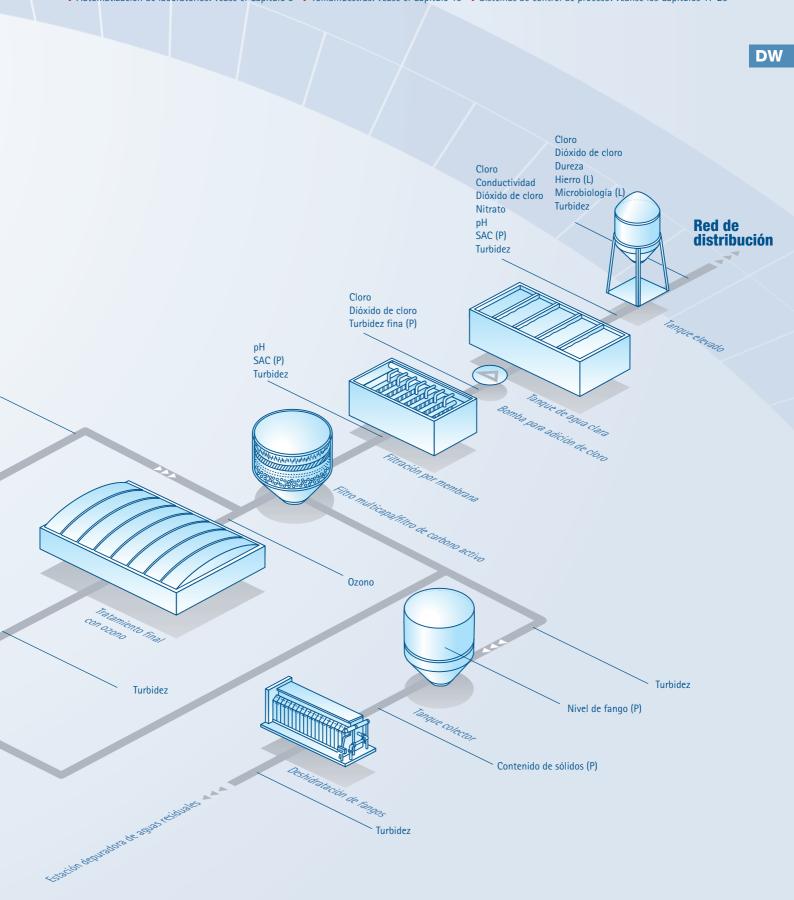

ww


Para depuradoras e industrias - Análisis de agua residual de HACH LANGE

El agua residual es uno de los principales productos de desecho de nuestra sociedad. Para asegurar que puede ser devuelta al ciclo natural del agua sin dañar el medio ambiente, las industrias y los municipios, como productores de agua residual, están obligados a cumplir unos requisitos mínimos determinados. Sólo por medio de un análisis preciso y fiable es posible controlar correctamente los valores umbrales y vigilar los procesos de depuración del agua residual de forma económica. El análisis de agua residual de HACH LANGE es el resultado de décadas de experiencia práctica con todos los parámetros relevantes que se dan en el ámbito industrial y municipal en diferentes circunstancias económicas y técnicas.

(L) laboratorio solamente

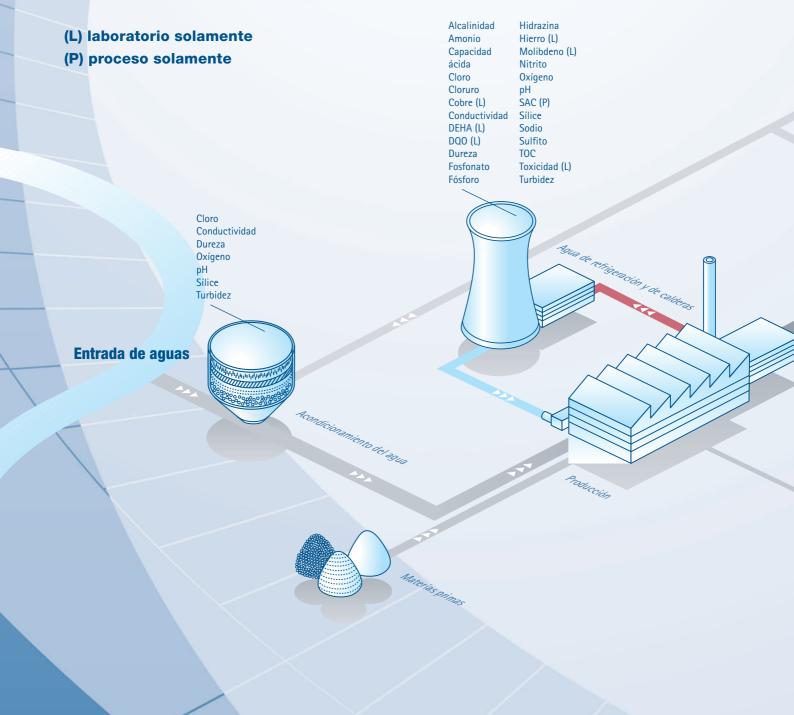




DW

Seguridad para suministradores y consumidores – Análisis de agua potable HACH LANGE

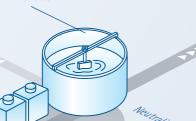
El agua potable es imprescindible para la vida humana. Tanto los consumidores como los suministradores cuentan con que sea de máxima calidad; para asegurar esta circunstancia, las legislaciones nacional e internacional especifican unos parámetros verificables. HACH LANGE es un especialista con muchos años de experiencia en todas las cuestiones relacionadas con el agua potable. Soluciones contrastadas de productos para todos los parámetros relevantes in situ, en el laboratorio o en el proceso están ampliamente desarrolladas. Dicho de otro modo, el análisis de agua potable de HACH LANGE representa seguridad en el tratamiento y uso del agua potable.



PW

Análisis de HACH LANGE en el agua de proceso – En y alrededor de la producción

El control de los procesos productivos industriales es el foco de atención de muchas partes. Las propias empresas y también los clientes y legisladores, necesitan datos verificables de la calidad del producto, del consumo de energía, de los procedimientos operativos, etc. Sólo una analítica apta para la práctica y fiable puede proporcionar estos datos. HACH LANGE ofrece un extenso programa de soluciones analíticas para la industria – p. ej., para aplicaciones de aguas de refrigeración y de calderas y también para campos de aplicación especiales en diversos sectores industriales.



PW

Cianuro (L) Cloro Conductividad DBO (L) DQ0 (L) Metales (L) Nutrientes Oxígeno pH SAC (P) Tensoactivos (L) TOC Turbidez

Aguas receptoras

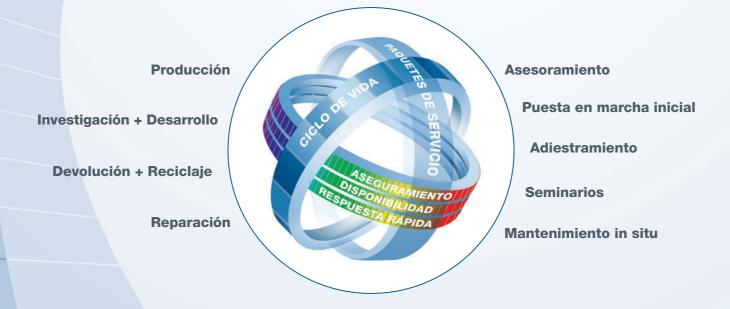
Conductividad Oxígeno рΗ Redox Turbidez

INDUSTRIA PAPELERA: p. ej. almidón, TOC, turbidez, etc.

GALVANOPLASTIA: p. ej. análisis de baños de cobre y de níquel, cromo (VI), cianuro, tensoactivos, AOX, etc.

INDUSTRIA CERVECERA/BEBIDAS: p. ej. color de la cerveza, dureza, nitrato, nitrito, cloro, turbidez, unidades "Bitter", dicetonas vicinales y otros parámetros MEBAK, etc.

INDUSTRIA QUÍMICA/PETROLÍFERA: p. ej. Hazen, Gardner, TOC, AOX, formaldehido, medida de fluidos, etc.


INDUSTRIA FARMACÉUTICA: p. ej. TOC, opalescencia conforme a Farmacopea Europea 5.0, etc.

WW

Servicio en cooperación -Personalizado y global

Los sistemas de control de proceso dependen de unos datos analíticos fiables. HACH LANGE respalda el empleo de sus sistemas de medida durante su ciclo de vida, desde la puesta en marcha hasta el reciclaje. Apoyándose en décadas de experiencia, HACH LANGE ha desarrollado un servicio global basado en la cooperación con sus clientes. Paquetes de Servicio flexibles proveen a cada sistema de medida de la estrategia necesaria para asegurar su funcionamiento.

Paquete de Servicio "Puesta en marcha": Puesta en marcha inicial + Adiestramiento

Apoyo personal competente durante el periodo de formación y documentación para fines de aseguramiento de la calidad y un funcionamiento fiable de los sistemas de medida.

Aseguramiento flexible sin vínculos contractuales: gran nivel de disponibilidad de los sistemas de medida gracias a la sustitución de piezas de repuesto y realización de reparaciones según sea preciso.

Paquete de Servicio 2: Inspección + Mantenimiento

Periodo de garantía de 36 meses: inspecciones periódicas de los sistemas de medida según el programa de mantenimiento – para una larga vida útil de los instrumentos y un funcionamiento fiable con costes reducidos; puesta en marcha, mano de obra y piezas de repuesto incluidas.

Servicio in situ más teleservicio para la tecnología de medida basada en SC: disponibilidad de técnicos de mantenimiento según convenga y según lo establecido en el programa de mantenimiento; siempre al día con informes de eventos por SMS.

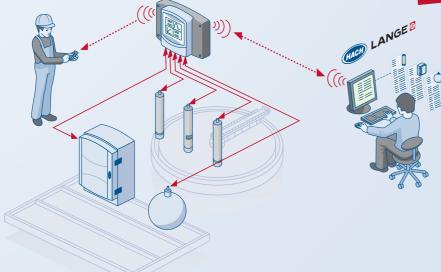
WW DW PW

Cara a cara - apoyo personal desde el primer día

La puesta en marcha y el intenso adiestramiento por parte de técnicos cualificados son parte del servicio de HACH LANGE. Así se asegura que el personal tenga un pleno conocimiento del funcionamiento y el mantenimiento y que el sistema de medida esté inmediatamente disponible.

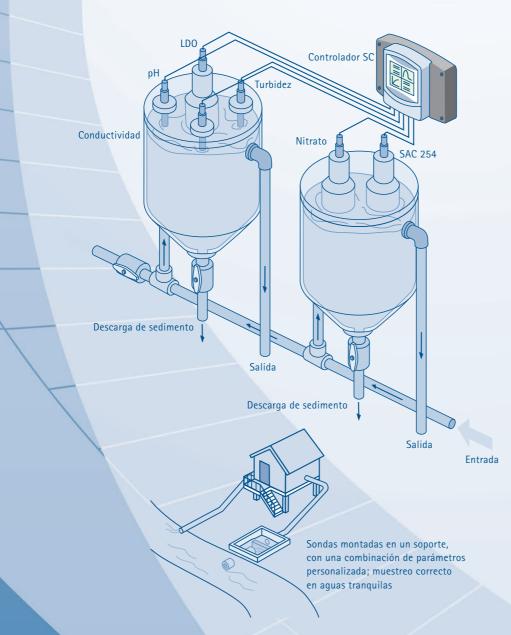
Servicio de calidad

HACH LANGE dispone del sistema de calidad ISO 9001:2000 para el suministro y servicio post venta de analizadores de agua, lo que permite ofrecer procesos operativos de máxima calidad.


Probado in situ - por ejemplo, el informe de inspección

Los contratos de servicio personalizados de HACH LANGE producen en el cliente la satisfacción de asegurar el funcionamiento correcto de los sistemas de medida in situ. Ello, mediante inspecciones preventivas periódicas, las cuales son totalmente trazables en informes individuales.

El controlador SC 1000 informa al personal pertinente, por SMS, sobre los sensores de proceso SC conectados. De forma simultánea, los mensajes de eventos o alarma son enviados al Centro de Teleservicio de HACH LANGE para su análisis por técnicos especializados. En caso de necesidad, contactarán con Usted por teléfono o intervendrán directamente para aplicar medidas correctoras. También pueden prepararse de forma más eficaz las visitas a la planta pues el técnico dispone de todas las piezas necesarias. La ventaja del Teleservicio SC: máxima disponibilidad de los sensores de proceso, lo que se traduce en un funcionamiento fiable de la planta a un nivel hasta ahora inalcanzado.



Siempre cerca; para más información acerca del Servicio de HACH LANGE visite la página www.hach-lange.es

Soluciones integrales para el control de la calidad del agua

- → Estaciones de medida completas, tanto fijas como portátiles
- → Equipo analítico personalizado
- → Telediagnóstico y transmisión de datos mediante GSM
- → Para el control de instalaciones industriales conforme a la Directiva IPPC

Control en la UE obligatorio a partir de finales de 2006

El programa para la aplicación de la Directiva Marco Europea sobre el Agua exige que los estados miembros de la UE tengan implantados, antes de finales de 2006, programas para la vigilancia de las cuencas fluviales. El objetivo del control es catalogar la calidad actual de las aguas como requisito previo para el deseado restablecimiento del buen estado ecológico de las cuencas fluviales. A las administraciones públicas responsables de las cuencas les ha sido encomendada la tarea de implementar los programas.

Fácil implementación con equipos llave en mano

Como fabricante competente de sistemas para el análisis del agua, HACH LANGE puede ofrecer un extenso y completo servicio. Las estaciones de control se proyectan y construyen una a una, y su equipamiento abarca todos los parámetros requeridos. Los sistemas de medida físicos, químicos y biológicos han sido contrastados en todo tipo de aplicaciones. El concepto de servicio incluye el suministro completo de muestras y energía. Conclusión: la solución llave en mano de HACH LANGE simplifica la aplicación de la directiva de la UE.

Estación de medida construida según especificaciones y totalmente equipada

Receptáculo industrial fijo, disponible como versión independiente y versión no independiente

Bomba en funcionamiento. Dependiendo de su ubicación, como bomba sumergible o bomba de presión

Soluciones completas llave en mano - configuraciones posibles

Características	the state of the s	strumentos portátiles;	Receptáculo de medida portátil (opcional, independiente de la energía eléctrica)	Estación de medida fija con alimentación eléctrica y conexión telefónica
Parámetros	p. ej. Alcalinidad, Amonio, Calcio, Cloruro, Cobre, Dureza, Hierro, Molibdeno, Nitrito, Sulfato, Sulfuro, Sólidos en suspen	Acidez, Bromo, Cloro, Color, Cromo (VI), Fósforo, Manganeso, Nitrato, Sílice, Sulfito, Yodo	Sensores para análisis en continuo: Aceite en agua Clorofila Concentración de sólidos Conductividad Nitrato Oxígeno pH SAC 254 Temperatura Turbidez	Como en la columna anterior, así como: • Amonio • Caudal • Fósforo (total y orto) • Medida de nivel • Test de fotobacterias conforme a DIN EN ISO • TOC
Suministro de muestra	Manual		Bomba sumergible Bomba de presión Bomba de succión	Bomba sumergible Bomba de presión Bomba de succión
Comunicación de datos	Memoria USB		GSM	GSM, línea dedicada opcional

- → En las páginas siguientes encontrará detalles de los sensores e instrumentos para la tecnología de medida de proceso y la analítica de laboratorio
- → Más información acerca de los laboratorios portátiles DREL, en la página 38

Controlador SC 1000:

pueden conectarse ocho sondas SC como máximo

→ Más información, en la página 98

Más información en www.hach-lange.es, ref. de búsqueda "Calidad del agua"

Analítica de HACH LANGE – Desde una medida puntual hasta análisis en serie

La analítica de laboratorio de HACH LANGE es tan extensa y diversa como el propio análisis de las aguas. Su marca de fábrica es un diseño consistente orientado a la aplicación – con sistemas bien desarrollados que se complementan entre sí, integrados por tecnología de medida, consumibles, control de calidad y accesorios para más de 100 parámetros. HACH LANGE ha establecido por lo tanto las condiciones necesarias para unos resultados fiables en el laboratorio y en campo. La analítica de laboratorio de HACH LANGE es una apuesta segura.

Automatización de laboratorios

Sistemas de medida completos para análisis en serie

→ Véase la página 83

Fotómetros VIS y UV-VIS

Desde un pequeño colorímetro de un solo parámetro hasta un espectrofotómetro hecho y derecho

→ Véase la página 29

pH, conductividad, oxígeno, redox

Sistemas de medida electroquímicos, electrodos y accesorios

→ Véase la página 18

Laboratorios medioambientales portátiles, totalmente equipados para diversas aplicaciones

→ Véase la página 30

Perfectamente desarrollada: lo que convierte a la estación de medida de HACH LANGE en algo especial son los componentes armonizados del sistema

Tecnología de medida

→ Medida puntual o análisis en serie, en el laboratorio de control o in situ – disponemos de la tecnología de medida indicada para cada aplicación

Reactivos

→ Para todos los parámetros principales de amonio a zinc, desde un test rápido de "screening" hasta análisis comparables a la norma, con preparación de muestras y aseguramiento de la calidad

Servicios

- → Apoyo in situ
- → Servicio + mantenimiento
- → Eliminación + reciclaje
- → Página web con descargas de documentos y tienda on-line
- → Información periódica para el cliente
- → Seminarios + talleres

ww

DW

PW

El sistema de HACH LANGE para el análisis de aguas

Reactivos

Test visuales, reactivos fotométricos y standards para control de calidad

→ Véase la página 41

Turbidez

Instrumentos de medida compatibles con USEPA e ISO; standards preparados con estabilidad de calibración duradera

→ Véase la página 73

Accesorios

Accesorios para fotómetros, preparación de muestras, periféricos

→ Véase la página 78

pH, redox, conductividad, O₂ – Para todas aplicaciones en el laboratorio e in situ

En el tratamiento de aguas residuales y potables, así como en el aseguramiento de la calidad, el pH es la base para todos los análisis. La conductividad y el oxígeno pueden jugar también un papel importante en muchas aplicaciones, tanto en campo como en el laboratorio. Debido a la gran demanda de estos parámetros, los productores tienen que ofrecer una amplia gama de productos para satisfacer las necesidades de sus clientes. Aquí es donde HACH LANGE es más fuerte, con más de 50 años de experiencia y 3 gamas completas de producto, con medidores, electrodos y accesorios.

Gama de productos HQD/INTELLICAL
→ Véase la página 19

Gama de productos SENSION

→ Véase la página 24

Gama de productos METERLAB

→ Véase la página 26

Datos digitales para mayor seguridad en campo y en el laboratorio

Los medidores HQD y los electrodos INTELLICAL utilizan tecnología digital para proporcionar una mayor seguridad de los resultados. La tecnología digital permite una enorme flexibilidad y un manejo sin errores – p. ej. mediante la memorización de los datos de calibrado en los electrodos inteligentes. Hay electrodos INTELLICAL disponibles para todos los parámetros electroquímicos en diversas configuraciones, y como sensores LDO sin calibración para la medida de O2.

Tecnología contrastada para muchas aplicaciones

Los medidores SENSION y los electrodos para pH, conductividad y oxígeno disuelto han demostrado su eficacia en numerosas aplicaciones de análisis de aguas. Se caracterizan por su construcción robusta, fácil manejo y lecturas fiables; unos atractivos sets iniciales y una gama de electrodos probados en la práctica completan la oferta.

Buenas Prácticas de Laboratorio (GLP) para requisitos especiales

El sistema METERLAB se presenta para las aplicaciones exigentes que requieren la determinación de pH, conductividad e iones (ISE) en los laboratorios industriales y de investigación. Los diferentes modelos de medidores METERLAB proveen soluciones conforme a GLP para cada situación de medida. Con la tecnología especial de electrodo RED ROD, Usted puede estar seguro de obtener tiempos de respuesta cortos con precisión y reproducibilidad a largo plazo.

ww

DW

PW

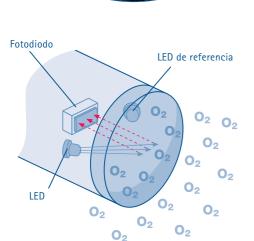
HQD – Electroquímica digital para unos valores de medida sumamente fiables

- → Excelente fiabilidad y fácil manejo mediante el reconocimiento automático de los electrodos
- → Mínima inversión de tiempo y máxima flexibilidad al guardar los datos de calibrado en los electrodos

Con HACH LANGE, en buenas manos – pH, conductividad y O₂

HQD significa High Quality Digital – completo y armonizado, con medidores, accesorios y electrodos. La característica especial de HQD son los electrodos INTELLICAL, desarrollados recientemente: almacenan todos los datos sobre características relevantes en forma digital en su cabezal. El sistema se completa con unos prácticos accesorios para el uso en el laboratorio e in situ. En resumen: HQD mide pH, conductividad y O₂ con mayor fiabilidad, flexibilidad y facilidad que nunca.

Mezclar + combinar [mix + match] para manejar los electrodos con suma facilidad


Simplemente inteligentes: los electrodos INTELLICAL toman nota de sus datos de calibración. Esto ahorra tiempo y hace que el proceso de cambio de los electrodos sea todavía más sencillo. Ahora, los electrodos se calibran sólo una vez en la estación de medida en el laboratorio central, y están listos para utilizarlos de inmediato con otros medidores HQD en el terreno.

Electrodos INTELLICAL para HQD – pH, conductividad y O₂ digital

- → Medida sin interferencias, también con cable de 30 m, p. ej. para pH
- → Sensor de oxígeno LDO sin calibración, con requisitos de mantenimiento mínimos
- → Tiempos de respuesta cortos y larga vida útil de los electrodos
- → Los electrodos INTELLICAL también disponibles en versiones robustas

Electrodo de pH, robusto, de acero inoxidable, con cable de 5, 10, 15 ó 30 m

Electrodo de conductividad, estándar, con cable de 1 ó 3 m

Simplemente versátiles: electrodos de pH y conductividad

Los electrodos INTELLICAL se benefician de más de 50 años de experiencia – con tiempos de respuesta cortos, excelente estabilidad de calibración y larga vida útil. Las versiones robustas de exterior funcionan de forma eficaz incluso en las condiciones más difíciles. Con la transmisión digital de datos, los cables pueden llegar a los 30 m, por lo que los electrodos pueden utilizarse en ubicaciones que anteriormente eran inaccesibles, p. ej. suspendidos en pozos y desde puentes.

Simplemente ingeniosa: medida de O₂ sin calibración

El principio de medida óptico del sensor LDO (Luminiscent Dissolved Oxygen) ha revolucionado la medida de O_2 . Los sensores LDO no contienen membrana alguna y por lo tanto no son susceptibles de bloquearse. En lugar de calibraciones frecuentes y cambios de electrolito, sólo hay que cambiar la cápsula del sensor una vez al año. Al utilizar los sensores LDO se ahorra tiempo y dinero desde el primer día, en todas las aplicaciones.

La cápsula del sensor LDO es excitada por un pulso de luz azul. Tras un retardo, emite una luz roja cuya duración dependerá de la concentración de oxígeno. Al efecto óptico se le denomina luminiscencia

WW

PW

Claramente legible: notificación acústica y visual de las lecturas estables

Registro de datos Ver registro de datos Borrar registro de datos Enviar registro de datos Ver datos de sonda Opciones del Informe: Informe completo Salir Seleccionar

Administración de datos conforme a GLP, también in situ: se guardan todos los ajustes correspondientes a cada medición

HQD habla un lenguaje sencillo

HQD tiene una interfaz de usuario intuitiva – esto fue prioritario para HACH LANGE. La pantalla iluminada se lee siempre con claridad. La estructura de menús, bien organizada, se entiende a primera vista y asegura un manejo fluido y sin errores – para mediciones sencillas pulsando una sola tecla y, en particular, para programar tareas complejas.

¿Calibración? ¡HQD se lo recuerda!

El intervalo de calibración adecuado para la aplicación se define sólo una vez y HQD le recuerda con exactitud cuando debe realizarse la próxima calibración. Además, también se puede definir la calidad de la calibración de forma individual introduciendo las especificaciones para la pendiente.

Electrodos/sensores HQD INTELLICAL

Los electrodos/sensores INTELLICAL estándar son impermeables al agua hasta una profundidad de 3 metros durante 24 horas, incluido el sensor de temperatura.

Los electrodos/sensores INTELLICAL de exterior son impermeables al agua hasta una profundidad de 30 metros durante 24 horas, incluidos el sensor de temperatura, la carcasa de acero, con cable reforzado.

sensor de temperatura, la carcasa de acero, con cable reforzado.								
ARTÍCULO	DESCRIPCIÓN	LONG. CABLE	REF.	LONG. CABLE	REF.			
pH								
	Electrodo de pH INTELLICAL estándar, con electrolito líquido	1 m	PHC301-01	3 m	PHC301-03			
	Electrodo de pH INTELLICAL estándar, con electrolito de gel, sin mantenimiento	1 m	PHC101-01	3 m	PHC101-03			
	Electrodo de pH INTELLICAL de	5 m	PHC101-05	10 m	PHC101-10			
	exterior, robusto, con electrolito de gel, sin mantenimiento	15 m	PHC101-15	30 m	PHC101-30			
CONDUCTIVIDAD								
	Electrodo de conductividad INTELLICAL estándar, de grafito, de 4 polos	1 m	CDC401-01	3 m	CDC401-03			
	Electrodo de conductividad	5 m	CDC401-05	10 m	CDC401-10			
	INTELLICAL de exterior, robusto, de grafito, de 4 polos	15 m	CDC401-15	30 m	CDC401-30			
LDO (OXÍGENO DISUELTO)								
4	Sensor LDO INTELLICAL estándar	1 m	LD0101-01	3 m	LD0101-03			
	Sensor LDO INTELLICAL	5 m	LD0101-05	10 m	LD0101-10			
	de exterior, robusto	15 m	LD0101-15	30 m	LD0101-30			

Más información en www.hach-lange.es, ref. de búsqueda "HQD", con descarga gratuita de folletos y Manuales de instrucciones

HQD de cerca en www.electroquimica.hach-lange.es, con demostración 3D interactiva. ¡Pruébelo gratis durante 14 días!

Medidores HQD – Especificaciones técnicas

CARACTERÍSTICA			MEDIDO	RES			
		HQ11D	HQ14D	HQ30D flexi	HQ40D multi		
Canales de medición	Descripción	1 (pH)	1 (conductividad)	1 (pH o conductividad u O ₂)	2 (por canal: pH o conductividad u O ₂ o ISE)		
Oxígeno	Rango de medida:			Compensación	Compensación		
(LDO)	0,00 – 20,0 mg/l; 0 – 200%			automática de	automática de		
	Resolución: 0,01 ó 0,1 mg/l;			presión de aire	presión de aire		
	Saturación 0,1%						
	Precisión: ± 1% del rango de medida						
рН	Rango de medida: 0 – 14 Resolución: (seleccionable) 0,1/0,01/0,001 Precisión: ± 0,002 Compensación de temperatura: automática	•		•	•		
Potencial redox	Rango de medida: ± 1.500 mV Resolución: 0,1 Precisión: ± 0,1 mV	•		•	•		
Concentración	Rango de medida: en función del electrodo				•		
de iones (ISE)	Resolución: (seleccionable); máx. 5 posiciones 0,1/0,01/0,001 Precisión: ± 0,1 mV						
Conductividad	Resolución: máx. 5 posiciones,		Rango de medida:	Rango de medida:	Rango de medida:		
	2 posiciones decimales		0,01 μS/cm –	0,01 μS/cm –	0,01 μS/cm -		
	Compensación de temperatura: no lineal		200 mS/cm;	200 mS/cm;	400 μS/cm		
	(agua natural según DIN 38404/		Precisión: ± 0,5%	Precisión: ± 0,5 %	Precisión: ± 0,5%		
	EN ISO 7888), no lineal (NaCl),		(1 μS/cm –	(1 μS/cm –	(1 μS/cm –		
	coeficiente lineal [valor numérico] %/°C; sin compensación		200 mS/cm)	200 mS/cm)	400 mS/cm)		
Calibración	Con recordatorio automático de la	Máx. 4 puntos	1 punto	pH: máx. 4 puntos	pH: máx. 4 puntos		
Cantilación	calibración y el standard de control	Max. + pulltos	T punto		Conductividad: 1 punto O ₂ : 1 punto ISE: máx. 5 puntos		
"Autoread"		•	•	•	•		
Pantalla de estado)	•	•	•	•		
del electrodo							
Interfaces					Puerto USB imper- meable al agua para impresora, PC, temperatura, memoria USB		
Protección mediante contraseña		•	•	•	•		
Opciones de	Básico, Avanzado, Completo (GLP)						
funcionamiento							
	500 valores medidos; almacenamiento ma	anual o automático					
de datos							
IDs	Para muestras y usuarios: alfanuméricos, máx. 12 caracteres; 12 nombres de muestra y 20 de usuario; registro automático del número de muestras (0–999)						
	de medición Manual, Intervalo, Continuo; métodos de medición, editables						
Pantalla	Pantalla gráfica retroiluminada; 240 x 160 pixel; apagado automático en el modo de ahorro de energía; con indicación de fecha y hora. HQ40D solamente: indicación simultánea de 2 parámetros y temperatura						
Alimentación	Conexión a la red eléctrica: 115 V/250 V (unidad de alimentación, opcional) Funcionamiento a pilas: 4 pilas AA o pilas recargables (se requiere cargador de baterías)						
Clase de protección	IP 67 para medidor, electrodos de exterior y						
Dimensiones,	95 x 197 x 36 mm (Alt. x Anch. x Prof.), 3	23 g (sin pilas)					
peso	, , , , , , , , , , , , , , , , , , , ,						
-							

HQD – Información para realizar pedidos

ww

DW

PW

Sets iniciales HQD – simplemente agrupar según sea preciso:

Por ejemplo, HQ30D.99.101301

El set inicial HQ30D.99.101301 consta de:

- Medidor HQ30D
- Electrodo de pH, de gel, cable de 1 m
- Sensor LDO, cable de 1 m

Cada set contiene soluciones patrón y soluciones standard. Cada set HQ30D y HQ40D viene con un maletín y accesorios.

000	Sin electrodo
101	PHC 101 estándar, pH, gel, 1 m
103	PHC 101 estándar, pH, gel, 3 m
105	PHC 101 de exterior, pH, 5 m
110	PHC 101 de exterior, pH, 10 m
115	PHC 101 de exterior, pH, 15 m
130	PHC 101 de exterior, pH, 30 m
151	PHC 301 estándar, pH, electrolito líquido, 1 m
153	PHC 301 estándar, pH, electrolito líquido, 3 m
201	CDC 401 estándar, conductividad, 1 m
203	CDC 401 estándar, conductividad, 3 m
205	CDC 401 de exterior, conductividad, 5 m
210	CDC 401 de exterior, conductividad, 10 m
215	CDC 401 de exterior, conductividad, 15 m
230	CDC 401 de exterior, conductividad, 30 m
301	LDO 101 estándar, O ₂ , 1 m
303	LDO 101 estándar, O ₂ , 3 m
305	LDO 101 de exterior, O_2 , 5 m
310	LDO 101 de exterior, O_2 , 10 m
315	LDO 101 de exterior, O_2 , 15 m
330	LDO 101 de exterior, O ₂ , 30 m

Accesorios

AUUCSUIIUS		
ARTÍCULO	DESCRIPCIÓN	REF.
Kit de campo	Cubierta de plástico a prueba de golpes para uso en el exterior; con correas para llevar a la muñeca y al cuello	5828700
Portaelectrodos	Soporte a prueba de golpes para el electrodo estándar, con gestor de cable para una longitud de cable de hasta 3 metros; se puede conectar a la cubierta de plástico	5829400
Maletín (estándar)	Para los electrodos estándar; práctico maletín de plástico, a prueba de golpes, liviano; contiene el kit de campo, dos portaelectrodos para electrodos estándar y 5 botellas de muestra (120 ml)	5825800
Maletín (de exterior)	Para los electrodos de exterior; práctico maletín de plástico, a prueba de golpes, liviano; contiene el kit de campo y 5 botellas de muestra (120 ml)	5835700
Marcador de cables	Para marcar cuando se llevan a cabo medidas sumergidas; 5/pack	5828610
Pinzas [clips] para electrodos	Marcadores de colores para identificar los diferentes electrodos; 5 colores, 2 marcadores por color	5819400
Adaptador USB	Para conectar una memoria USB, impresora, teclado o PC (solamente HQ40D)	5813400
Memoria USB	Para guardar datos y transmitir datos entre el HQ40D y un PC; 128 MB de capacidad	LZV568
Teclado	Con conector USB	LZV582
Cápsula de sensor LDO	Contiene una cápsula de sensor, chip de memoria con datos de calibración y anillos de estanqueidad	5811200
Bloque de alimentación	Para funcionamiento mediante conexión a la red eléctrica de HQ11D/HQ14D/HQ30D flexi	5826300

[→] Soluciones patrón y soluciones standard para HQD: véase la página 28

Más información en www.hach-lange.es, ref. de búsqueda "HQD", con descarga gratuita de folleto (DOC032.61.00442) y Manuales de instrucciones

SENSION - Tecnología de medida electroquímica contrastada

- → 10 medidores de uno o de múltiples parámetros
- → Para uso en el laboratorio e in situ
- → Manejo fácil, autoexplicativo
- → Rápida estabilización de los valores medidos
- → Construcción robusta

Probados a escala mundial – para pH, conductividad, O, y redox

La solidez de la familia SENSION reside en la buena combinación de tecnología de medida fiable y electrodos armonizados. SENSION ha demostrado su capacidad a escala mundial en numerosas aplicaciones, especialmente en análisis de aguas residuales y aguas potables, en laboratorio y en campo.

Prácticos y bien concebidos

Todos los medidores SENSION se caracterizan por su excelente precisión y fiabilidad unidas a un manejo intuitivo. El display grande, la opción integrada de compensación de temperatura y las funciones de medida y calibración automáticas facilitan un análisis eficaz.

Portátiles también en el terreno

El análisis in situ es muy exigente pero los 5 medidores portátiles SENSION satisfacen cada requisito. Su carcasa robusta e impermeable al agua, junto con detalles como el maletín de transporte totalmente equipado y el práctico porta-electrodos del medidor, garantizan resultados fiables y un adecuado entorno de trabajo en el campo.

El medidor SENSION más indicado para cada parámetro y cada aplicación.

MEDIDOR		pН	COND.	O ₂ /DBO	REDOX	ISE
MEDIDORES PO	DRTÁTILES					
SENSION 1	Medidor básico, análisis de rutina de pH	•			•	
SENSION 2	pHmetro para investigación y aplicaciones ISE in situ	•			•	•
SENSION 5	Análisis preciso de conductividad, TDS y salinidad		•			
SENSION 6	Medida electroquímica de oxígeno en soluciones acuosas			•		
SENSION 156	Medidor multiparámetro para todas las aplicaciones in situ	•	•	•	•	
MEDIDORES DI	E LABORATORIO					
SENSION 3	Configuración básica pH para aplicaciones estándar en laboratorio	•			•	
SENSION 4	Configuración pH e ISE para análisis en el laboratorio	•			•	•
SENSION 7	Análisis preciso de conductividad, TDS y salinidad		•			
SENSION 8	Medida electroquímica de oxígeno en soluciones acuosas			•		
SENSION 378	Uno para todo – el medidor multiparámetro electroquímico para el laboratorio	•	•	•	•	

Los medidores SENSION están disponibles en diversas configuraciones para su uso con diferentes combinaciones de electrodos y accesorios – la solución correcta para cada situación de medida

Más información en www.hach-lange.es, ref. de búsqueda "SENSION" con descarga gratuita del folleto (DOC032.61.00599) y de varias hojas de datos y manuales de instrucciones

WW

PW

La estación de comunicación perfecciona los medidores SENSION portátiles con funciones relevantes para el laboratorio, al facilitar su conexión a la red eléctrica y

la transferencia de datos a una impresora o un PC

Medidores y electrodos SENSION – información para pedidos

MEDIDORES SENSION CON CONFIGURACIÓN BÁSICA	REF.
SENSION 1 con electrodo de pH de gel	5170011
Medidor portátil para pH, redox, temperatura; entradas: conector de 5 pins y BNC; pilas; electrodo combinado de pH, de gel,	
con sensor de temperatura, cable de 1 m, 1 set de soluciones patrón SINGLET (pH 4,01/7,00), maletín	
SENSION 2 con electrodo de pH de gel	5172512
Medidor portátil para pH, redox, ISE, temperatura; pantalla iluminada, función "Autoread", almacenamiento de datos, funcionalidad GLP;	
Entradas: conector de 5 pins y BNC; para funcionamiento con pilas y pilas recargables, con electrodo combinado de pH, de gel,	
con sensor de temperatura, cable de 1 m, 1 set de soluciones patrón SINGLET (pH 4,01/7,00), pilas, maletín	
SENSION 2 con electrodo de pH de gel y estación de comunicación	5172515
Descripción como 5172512, con estación de comunicación para funcionamiento mediante conexión a la red eléctrica y documentación de datos	
SENSION 5 con celda de medida de conductividad de 4 polos	5180010
Medidor portátil para conductividad, TDS, salinidad, temperatura; pantalla iluminada, función "Autoread", almacenamiento de datos,	
funcionalidad GLP, entradas: de 5 pins, funcionamiento con pilas y pilas recargables, con celda de medida de conductividad, de grafito,	
de 4 polos, constante de celda K=0,5 cm-1, sensor de temperatura, cable de 1 m, solución de calibración 1.000 μS/cm, pilas, maletín	
SENSION 5 con celda de medida de conductividad de 4 polos y estación de comunicación	5180014
Descripción como 5180010, con estación de comunicación para funcionamiento mediante conexión a la red eléctrica y documentación de datos	
SENSION 6 con electrodo de oxígeno	5185010
Medidor portátil para oxígeno disuelto, pantalla iluminada, función "Autoread", almacenamiento de datos, funcionalidad GLP, entradas:	
de 5 pins, funcionamiento con pilas y pilas recargables, con electrodo de 0_2 , cable de 3 m, 2 membranas de repuesto, electrolito,	
recipiente de calibración y almacenamiento, pilas, maletín	
SENSION 6 con electrodo de oxígeno y estación de comunicación	5185014
Descripción como 5185010, con estación de comunicación para funcionamiento mediante conexión a la red eléctrica y documentación de datos	
ELECTRODOS SENSION Y ACCESORIOS	REF.
Electrodo combinado de pH, de gel con sensor de temperatura, barra de plástico, rango de medida pH 0-14, rango de	5193500
temperatura 0 a 100 °C, relleno de gel electrolito, conector de 5 pins, cable de 1 m	
Electrodo combinado de pH, rellenable con sensor de temperatura, barra de plástico, rango de medida pH 0-14, rango de	5194000
temperatura 0 a 100 °C, electrolito interno rellenable, conector de 5 pins, cable de 1 m	
Electrodo combinado de pH PLATINUM con sensor de temperatura, barra de plástico, rango de medida pH 0-14, rango de	5191000
temperatura 0 a 100 °C, conector de 5 pins, función de dispensación de gel, con 2 cartuchos de gel KCl recambiables, cable de 1 m	
Electrodo combinado de pH PLATINUM con membrana plana para superficies con sensor de temperatura, barra de plástico,	5191500
rango de medida pH 0-14, rango de temperatura 0 a 80 °C, conector de 5 pins, función de dispensación de gel, con 2 cartuchos	
de gel KCl recambiables, cable de 1 m	
Electrodo de redox de gel con sensor de temperatura, barra de plástico, rango de temperatura 0 a 80 °C, conector de 5 pins, cable de 1 m	5193900
Electrodo de redox PLATINUM con sensor de temperatura, barra de plástico, rango de temperatura 0 a 80 °C, función de dispensación	5193700
de gel, con 2 cartuchos de gel KCl reemplazables, conector de 5 pins, cable de 1 m	
Electrodo de redox de gel, rellenable sin sensor de temperatura, barra de plástico, rango de temperatura 0 a 80 °C, conector BNC, cable de 1 m	5193200
Sensor de temperatura, rango de medida 0 a 80 °C, conector de 5 pins	5198000
Electrodo de oxígeno, sensor de Clark de 2 polos cubierto de membrana con sensor de temperatura, rango de medida 0-20 mg/l o	5197000
0-200%, rango de temperatura 0 a 50 °C, conector de 5 pins, cable de 1 m	
Electrodo de oxígeno, descripción como 5197000, con cable de 3 m	5197003
Electrodo de oxígeno, descripción como 5197000, con cable de 15 m	5197015
Celda de conductividad, de 4 polos, de grafito, constante de celda K=0,5 cm ⁻¹ , con sensor de temperatura, solución de calibración	5197500
1.000 μS/cm, cable de 1 m	
Celda de conductividad, descripción como 5197500, con cable de 3 m	5197503
Estación de comunicación, alimentación 230 V para SENSION 2/5/6/156, con puerto RS232C para la documentación de datos	5187502

- → Patrones para la familia SENSION: véase la página 28
- → Otros medidores, electrodos y accesorios SENSION, bajo solicitud

METERLAB – Electroquímica para Buenas Prácticas de Laboratorio (GLP)

La filosofía METERLAB representa la analítica excelente de laboratorio para pH, conductividad e iones (ISE). Medidores, electrodos y accesorios forman la gama de productos METERLAB, basada en componentes adaptados entre sí. METERLAB proporciona calidad en la fiabilidad de los valores medidos y la fácil ejecución del análisis. El resultado: cuando Usted elige METERLAB, automáticamente elige GLP.

PHM 220 – el pHmetro de laboratorio universal

ION 450 – tecnología punta para el análisis de iones

Extensa oferta de electrodos – con tecnología RED ROD para tiempos de respuesta cortos y gran precisión

Instrumentos METERLAB - especificaciones técnicas principales

DESCRIPCIÓN	CDM 210	CDM 230	PHM 210	PHM 220	PHM 240 *	PHM 250 *	ION 450 *
Parámetro	Conductividad	Conductividad	pH	pН	pH, ISE	pH, ISE	pH, Cond., ISE
Rango de medida	De 0,01 μS/cm a 400 μS/cm	De 0,001 a 2.000 μS/cm	De -9,000 a +23,000 pH	De -9,000 a +23,000 pH	De -9,000 a +23,000 pH	De -9,000 a +23,000 pH	De -9,000 a +23,000 pH
Compensación de temperatura	Lineal	Lineal No lineal					
Puntos de calibración		1	2	3	9	9	5
GLP							
Fecha/hora		•		•	•	•	•
Memorización de valores medidos		•		•	•	•	•
Recordatorio de calibración		•		•	•	•	•
Puede conectarse un carrusel de muestras		•		•	•	•	•
Características especiales	Autoread	Amplio rango de medida	Fácil manejo	GLP	Calibración en múltiples pun- tos, funciona- miento con tomamuestras		Versátil

^{*} Libre introducción de patrones de calibración Todos: Interfaz RS232C, Autoread, AutoCal

[→] En algunos países, estos sistemas son distribuidos por compañías especializadas. Su persona de contacto en HACH LANGE le proporcionará más información

Más información en www.hach-lange.es, ref. de búsqueda "METERLAB", con descarga gratuita de folletos y manuales de instrucciones

WW

PW

Electrodos de pH, redox y fluoruro METERLAB - una selección

PARÁMETRO	pH	pH	pH	pH	pH	REDOX	F-
Tipo	PHC2001	PHC2085	PHC2011	PHC2701	PHC3105	MC3051Pt	ISEC301F
Ref.	E16M313	E16M501	E16M317	E16M323	E16M308	E31m003	E41M017
Aplicaciones	Para todo uso	Para todo uso	Muestras	Aguas con	Típicas de	Para todo uso	
			alcalinas	alta [KCI]	electrodo de gel		
Sistema de referencia	RED ROD	RED ROD	RED ROD	RED ROD	Ag/CI	Ag/CI	Ag/CI recomendado
Rango de medida	0-12 pH	0-12 pH	0-14 pH	0-12 pH	2-12 pH		5x10 ⁷ -10 ⁰ M
							0,01-20.000 ppm
Rango de temperatura	-10 a 100 °C	-10 a 100 °C	0 a 100 °C	-10 a 100 °C	0 a 60 °C	0 a 80 °C	0 a 50 °C
Mín. profundidad de la muestra	18 mm	14 mm	18 mm	18 mm	18 mm		
Unión líquida	Pin poroso	Pin poroso	Pin poroso	Forma anular	Abierta	Pin poroso	
Características especiales		Sensor de			Robusto	Elemento sensor anillo de	Iones interferentes OH-
		temperatura				platino Solución puente	Rango de pH 5-7
						salino KCl 3 M + AgCl saturado	

- → Patrones para la familia METERLAB: véase la página siguiente
- → Más información acerca de los medidores, electrodos y accesorios METERLAB, bajo solicitud

Electrodos de conductividad METERLAB - una selección

PARÁMETRO	CONDUCTIVIDAD	CONDUCTIVIDAD	CONDUCTIVIDAD	CONDUCTIVIDAD	CONDUCTIVIDAD
Tipo	CDC566T	CDC641T	CDC511T	CDC861T	CDC267-9
Ref.	E61M010	B15B001	E61M009	E61M016	E61M011
Aplicaciones	Para todo uso	Para todo uso	Agua pura	Ácidos/bases	Baja
				fuertes	conductividad
Constante de celda	1,0 cm ⁻¹	0,85 cm ⁻¹	1,0 cm ⁻¹	1,0 cm ⁻¹	0,1 cm ⁻¹
Número de polos	4	2	4	4	2
Temperatura	80 °C	100 °C	80 °C	100 °C	100 °C
máxima					
Mínima profundidad	35 mm	14 mm	3 mm	35 mm	26 mm
de inmersión					
Características	Sensor de	Sensor de tempe-	Sensor de	Sensor de tempe-	
especiales	temperatura	ratura, platinado	temperatura	ratura, platinado	

La estación de muestras SAM7 es un agitador magnético y portaelectrodos combinado – para unas condiciones de agitación estables y reproducibles

Patrones de pH y conductividad para HQD, SENSION, METERLAB

Soluciones patrón de pH

DESCRIPCIÓN	pation de pri	CANTIDAD	REF.					
Standards de n	H certificados, según IUPAC	[Internations	l Union of					
Pure and Applie		Linternationa	ii oilloii oi					
	en bote hermético sellado; d	uración de co	nservación					
	on certificado COFRAC [Com							
	on]; trazables según materiales de referencia estándar producidos							
- -	onal Institute of Standards a	•						
tolerancia ± 0,010 pH (25 °C)								
pH 1,679		500 ml	S11M001					
pH 4,005		500 ml	S11M002					
pH 7,000		500 ml	S11M004					
pH 10,012		500 ml	S11M007					
Soluciones pati	rón de calidad							
Listas para el a	nálisis; con y sin identificac	ión por color	es*					
pH 4,01	Rojo	500 ml	2283449					
pH 7,00	Amarillo	500 ml	2283549					
pH 10,01	Azul	500 ml	2283649					
pH 4,01	Incolora	500 ml	1222349					
pH 7,00	Incolora	500 ml	1222249					
pH 10,00	Incolora	500 ml	1222149					
pH 1,09	Técnica,	500 ml	S11M009					
	conforme a (DIN 19267)							
pH 4,65	Técnica,	500 ml	S11M010					
	conforme a (DIN 19267)							
pH 9,23	Técnica,	500 ml	S11M011					
6.1	conforme a (DIN 19267)							
	ón de pH en polvo		and the					
	viduamente, cada uno suficio		mi de					
	; con identificación por colo		2226966					
pH 4,01	Rojo	50/pack 250/pack	2226966					
pH 7,00	Amarillo	50/pack	2227066					
μπ 7,00	Amarino	250/pack	2227064					
pH 10,00	Azul	50/pack	2227004					
μπ το,σο	Azui	250/pack	2227166					
Soluciones natu	rón SINGI FT	250/pack	2227104					
Soluciones patrón SINGLET En bolsas individuales herméticas selladas; con identificación por								
colores; de 25 ml cada una*								
pH 7,00 y	Amarillo + Azul	2 x 10/pack	2769820					
pH 10,01		7 2 2 3 1						
pH 4,01 y	Rojo + Amarillo	2 x 10/pack	2769920					
pH 7,00								
pH 4,01	Rojo	20/pack	2770020					
pH 7,00	Amarillo	20/pack	2770120					
pH 10,01	Azul	20/pack	2770220					

[→] Patrones y standards adicionales, bajo solicitud

Soluciones standard de conductividad

Coluciones Standard de Conductividad							
DESCRIPCIÓN		CANTIDAD	REF.				
Standards con certificado							
Suministrados en bote hermético sellado; duración de conservación							
_	n certificado; trazables segú	in materiales	de referen-				
cia estándar producidos por NIST							
KCI 1 D	111,3 mS/cm ± 0,5%	500 ml	S51M001				
KCI 0,1 D	12,85 mS/cm ± 0,35%	500 ml	S51M002				
KCI 0,01 D	$1.408 \mu S/cm \pm 0.5\%$	500 ml	S51M003				
NaCl 0,05%	$1.015 \mu S/cm \pm 0.5\%$	500 ml	S51M004				
Soluciones de N	laCI						
85,47 mg/l	$180 \pm 10 \mu S/cm$	100 ml	2307542				
como NaCl							
491 mg/l	$1.000 \pm 10 \mu\text{S/cm}$	100 ml	1440042				
como NaCl							
1.000 mg/l	$1.990 \pm 20 \mu\text{S/cm}$	100 ml	210542				
como NaCl							
10.246 mg/l	$18.000 \pm 50 \mu\text{S/cm}$	100 ml	2307442				
como NaCl							
Soluciones de K	(CI molares						
KS 910	12,88 mS/cm	500 ml	C20C250				
KCI 0,1 M							
KS 920	1,413 mS/cm	500 ml	C20C270				
KCI 0,01 M							
KS 930	146,9 μS/cm	500 ml	C20C280				
KCI 0,001 M							
Otros							
Solución para la	vado de electrodo	20/pack	2770320				
Solución para la	vado de electrodo	500 ml	2756549				

^{*} Patrón trazable según materiales de referencia standard producidos por NIST; tolerancia \pm 0,02 pH (25 °C)

En cada situación, el fotómetro más indicado para la analítica del agua

La gama de fotómetros de HACH LANGE es tan diversa como las situaciones que requieren análisis de aguas y control de calidad. HACH LANGE tiene el instrumento apropiado para todas y cada una de las aplicaciones. Todos los fotómetros están preprogramados para los métodos de HACH LANGE, con reactivos listos para el análisis. Este sistema ideal satisface las necesidades individuales mediante variadas combinaciones de métodos de usuario.

El 'Quién es Quién' de los fotómetros HACH LANGE

FUNCIONES	MODELOS "POCKET"	SERIE DR 800	DR 2800	XION	DR 5000
Véanse las páginas	p. 30	p. 32	p. 34	p. 37	p. 35
Rango de longitud de onda:	VIS	VIS	VIS	VIS	UV-VIS
luz visible (VIS) y luz UV	1 longitud de	1-4 longitudes de	340-900 nm	340-900 nm	190-1.100 nm
	onda fija	onda fijas			
Sistema óptico: tipo de fotómetro	Filtro	Filtro	Espectral	Espectral	Espectral
Espectro				Longitud de onda	Longitud de onda
				Tiempo	Tiempo
Test preprogramados	1-2	Máx. 90	~ 220	~ 100	~ 230
Cubetas-test, completamente fiables			•	•	•
Sobres de reactivo en polvo de	•	•	•		•
PERMACHEM, ACCUVAC,					
soluciones de reactivo					
Métodos de usuario programables			•	•	•
Capacidad de almacenamiento de	Máx. 10	Máx. 50	Máx. 500	Máx. 1.000	Máx. 1.000
valores medidos					
Documentación conforme a GLP			•	•	•
Software suplementario de aplicaciones					•
específicas					
Carrusel de cubetas					•
Función de flujo continuo ("Sipper")					•
Indicación visual con pantalla táctil			•		•
Interfaces		RS232	USB	RS232	USB
Clase de protección	IP 67	IP 67	IP 42	IP 31	IP 31
Funcionamiento independiente de la	•	•	•		
red eléctrica					
Disponible en laboratorio	•	•	•		
medioambiental portátil					
Dimensiones	6,1 x 3,2 x 15,2 cm	8,7 x 4,7 x 23,6 cm	22 x 13,7 x 33,2 cm	41,5 x 16,5 x 37 cm	45 x 20 x 50 cm
(Anchura x Altura x Profundidad)					
Peso	230 g (sin pilas)	450 g (sin pilas)	4 kg (sin batería)	9 kg	15,5 kg

- → Termostatos, impresoras y otros accesorios para los fotómetros: véase la página 78
- → Reactivos y aseguramiento de la calidad para los fotómetros: véase la página 66
- → Fotómetros de laboratorio para el análisis en serie, en el Capítulo 4; automatización de laboratorios: véase la página 83

POCKET Colorimeter II – 30 medidores de bolsillo para análisis in situ

- → Más de 30 medidores de parámetros individuales
- → Resultados fiables y fácil funcionamiento
- → Dimensiones reducidas para cualquier bolsillo
- → Sin conexión a red
- → Resistente, impermeable y totalmente equipado

Ahora mejor que nunca para el análisis in situ

Cada POCKET Colorimeter II está programado para uno o dos parámetros. Cabe en cualquier bolsillo y, junto con los prácticos test de HACH, proporciona resultados fiables en cualquier sitio – hasta en las condiciones más duras.

El probado y contrastado concepto del colorímetro se ha mejorado para hacerlo incluso más cómodo de usar y ahora ofrece una perfecta combinación de tecnología sólida y manejo intuitivo.

Funcionamiento óptimo

HACH LANGE sabe lo que se necesita en la práctica – la prueba está en la configuración:

- Simple: todas las funciones están disponibles mediante sólo 4 teclas
- Gran autonomía: funcionamiento a pilas para un máximo de 2.000 test
- Lecturas claras: incluso en las peores condiciones, gracias al tamaño de los dígitos y al display retroiluminado
- Protección IP 67

Fuerza en los detalles

¡Con su construcción robusta, estos pesos ligeros (230 g) pueden soportar trabajo muy duro!

Todos los modelos se suministran en un maletín de transporte totalmente equipado.

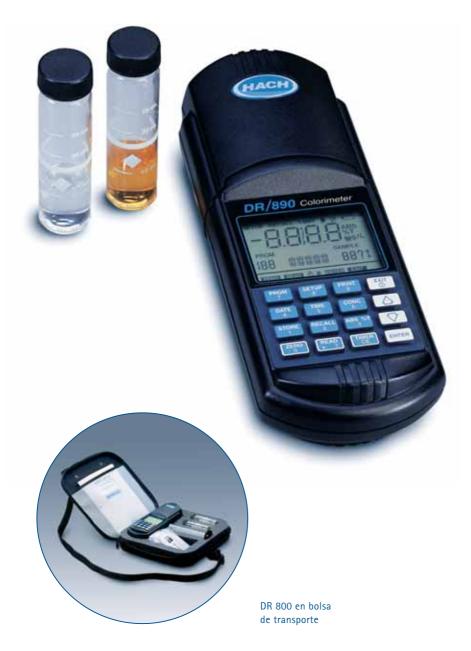
POCKET Colorimeter II con maletín de transporte, completo con reactivos, cubetas y manual de instrucciones

PARÁMETRO	RANGO DE MEDIDA (mg/l)	MÉTODO	DETERMINACIONES	REF.
Aluminio	0,01 – 0,80	Aluminón	100	5870025
Amonio	0,01 – 0,8	Salicilato	100	5870040
Bromo	0,05 - 4,5/0,2 - 10,0	DPD	100/50	5870001
Cloro (libre y total)	0,02 - 2,0/0,10 - 8,0	DPD	50/50	5870000
Cloro (libre y total y pH)	0,10-10 (Cl2)/6,0-8,5 (pH)	DPD/rojo de fenol	100/100 y100 (pH)	5870012
Cobre	0,04 – 5,0	Bicinconinato	100	5870019
Cromo (VI)	0,01 – 0,7	Difenilcarbacida	100	5870017
Dióxido de cloro	0,05 – 5,0	DPD, glicina	100	5870051
Fluoruro	0,1-2,0	Reactivo SPADNS	50	5870005
Fosfato (orto/total) (PO ₄ ³⁻)	0,02 – 3,0	PhosVer3	100	5870006
Fosfonato con lámpara UV	0.2 - 2.5/1.0 - 125 (PO43-)	PhosVer3/UV	100	5870008
Hierro	0,01 – 1,7	TPTZ	50	5870016
Hierro	0,02 – 5,0	FerroVer	100	5870022
Manganeso	0,01 – 0,7	PAN	100	5870018
Manganeso	0,2 - 20	Oxidación por periodato	100	5870015
Molibdato	0,02 - 3,0/0,1 - 12,0	Complejo ternario	100	5870010
Monocloramina/sin amonio	0.04 - 4.5 (Cl2)/0.02 - 0.5	Indofenol	100/50	5870026
Níquel y Cobalto	0,01-1,0 (Ni)/0,02-2,0 (Co)	PAN	100	5870020
Nitrato (NO ₃ -)	0,4 - 30	Reducción por Cd	100	5870002
Oxígeno	0,2 – 10,0	HRDO	50	5870003
Ozono	0,01 - 0,25/0,01 - 0,75	Índigo trisulfonato	50	5870004
Plomo	0,005 – 0,15	Extracción por columna	20	5870021
Sílice	1,0 – 100	Molibdato	100	5870034
Sulfato	2,0 - 70	Cloruro de bario	100	5870029
Zinc	0,02 – 3,0	Zincón	100	5870009
Longitud de onda 420 nm	0 – 2,5 absorbancia			5870042
Longitud de onda 450 nm	0 – 2,5 absorbancia	También para		5870045
		inmunoensayos		
Longitud de onda 476 nm	0 – 2,5 absorbancia			5870047
Longitud de onda 500 nm	0 – 2,5 absorbancia			5870050
Longitud de onda 528 nm	0 – 2,5 absorbancia			5870052
Longitud de onda 550 nm	0 – 2,5 absorbancia			5870055
Longitud de onda 580 nm	0 – 2,5 absorbancia			5870058
Longitud de onda 600 nm	0 – 2,5 absorbancia			5870060
Longitud de onda 655 nm	0 – 2,5 absorbancia			5870065

→ Todos los test para POCKET Colorimeter II: véase la página 54

Más información en www.hach-lange.es, ref. de búsqueda "POCKET" junto con el parámetro que se desee de la lista arriba expuesta, con descarga gratuita de folleto (DOC062.52.00608) y Manual de instrucciones (DOC022.61.006)

DW DW


PW

4

Serie DR 800 - Colorímetros compactos para 20, 50 o 90 test

Los colorímetros DR 800 están diseñados para utilización in situ. Se caracterizan por su manejo sencillo, tecnología moderna y construcción robusta. Los tres modelos se han configurado para 20, 50 o 90 parámetros de análisis de aguas, simplificando así la elección del instrumento correcto.

Versatilidad

Los modelos DR 800 están preprogramados para diferentes análisis:

- DR 820: más de 20 test
- DR 850: más de 50 test
- DR 890: más de 90 test

Los tres DR 800 funcionan óptimamente en combinación con los prácticos test de HACH – para resultados rápidos y fiables en análisis de aguas residuales, aguas potables, aguas de proceso, etc.

Fiabilidad

¡Adecuados para trabajar en todas partes! La carcasa (IP 67) de los modelos DR 800 garantiza un análisis de aguas fiable incluso en las condiciones más difíciles. La pantalla gráfica muestra los resultados como concentraciones – y las funciones de almacenamiento y transferencia de datos permiten documentar los resultados con fiabilidad.

Seguridad

El práctico concepto de los DR 800 se refleja en muchos detalles:

- Selección automática de longitud de onda para facilitar el manejo
- Capaces de funcionar durante periodos prolongados sin necesidad de conectarlos a la red
- Pueden programarse métodos de usuario
- Configurados para uso inmediato

WW

DW PW

Especificaciones técnicas de la serie DR 800

DR 820	DR 850	DR 890
4844000	4845000	4847000
Pantalla gráfica		
Tecnología LED, estable,		
que ahorra energía		
520 nm	520 nm	420 nm
	610 nm	520 nm
		560 nm
		610 nm
10 nm	10 nm	10 nm
Automática al seleccionar el método		
Absorbancia y transmitancia		
Hasta 99 valores medidos		
RS232C mediante adaptador infrarrojos		
3 - 1		
CE, GS		
	DR 820 4844000 Pantalla gráfica Tecnología LED, e que ahorra energ 520 nm 10 nm Automática al se Métodos HACH p Absorbancia y tra Pueden programa Reloj de tiempo n Hasta 99 valores RS232C mediante 23,6 x 8,7 x 4,7 c 450 g (sin pilas)	4844000 4845000 Pantalla gráfica Tecnología LED, estable, que ahorra energía 520 nm 520 nm 610 nm 10 nm 10 nm Automática al seleccionar el métod Métodos HACH pre-programados Absorbancia y transmitancia Pueden programarse métodos de us Reloj de tiempo real incorporado Hasta 99 valores medidos RS232C mediante adaptador infrar 23,6 x 8,7 x 4,7 cm 450 g (sin pilas) IP 67, estancos al polvo y al agua

Accesorios de DR 800

7.000001100 00 211 000	
DESCRIPCIÓN	REF.
Cubetas de medición (graduaciones de 10/20/25 ml;	2401906
2,54 cm (1 pulgada) de diámetro), 6/paquete	
Bolsa de transporte para DR 800	2722000
Maletín de transporte para los modelos DR 800	4942500
Maletín de transporte para los laboratorios	4943000
DR 800 para colorímetro, accesorios y reactivos	
Adaptador para inmunoensayos, 12 mm de diámetro	4846700
Adaptador para transferencia de datos (IR/RS232C),	4849000
cable incluido	
Programa HACH LINK para la transferencia de datos desde	4966500
los fotómetros de HACH a un PC por medio de interfaz	

- → DR 800 en equipo portátil de laboratorio de aguas totalmente configurado: véase la página 38
- → Todos los test para DR 800: véase la página 54 y sigs.

Más información en www.hach-lange.es, ref. de búsqueda "DR 800", con descarga gratuita del Manual de instrucciones (4844018)

Lista de parámetros de DR 800

PARÁMETROS	DR 820	DR 850	DR 890
Ácido cianúrico	•	•	•
Ácido silícico/Silicato		•	•
Ácidos orgánicos	•	•	•
Aluminio	•	•	•
Amonio		•	•
Boro			•
Bromo	•	•	•
Cianuro		•	•
Cloramina (mono)		•	•
Cloro (libre y total)	•	•	•
Cobre			•
Color (unidades Pt-Co)			•
Cromo (VI y total)			•
DQO		•	•
DEHA			•
Detergentes (aniónicos)		•	•
Dióxido de cloro	•	•	•
Dureza	•	•	•
Fluoruro		•	•
Fosfato (orto)	•	•	•
Fosfato (total)		•	•
Fosfonato		•	•
Hidrazina			•
Hierro	•	•	•
Inmunoensayo			•
Manganeso	•	•	•
Molibdato		•	•
Níquel	•	•	•
Nitrato	•	•	•
Nitrito	•	•	•
Nitrógeno (Kjeldahl)			•
Nitrógeno (total) (TN _b)			•
Oxígeno		•	•
Ozono		•	•
pH (fotométrico)	•	•	•
Sulfato	•	•	•
Sulfuro		•	•
Sólidos en suspensión (TSS)		•	•
Tanino y lignina		•	•
тос		•	•
Turbidez (FAU)	•	•	•
Zinc		•	•

Extraordinaria variedad de métodos – Para todos los test de HACH LANGE y más

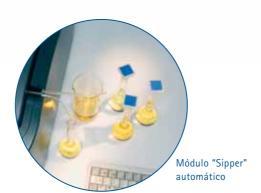
El amplio rango de reactivos HACH LANGE puede ser utilizado en el DR 2800 sin excepción. Todos los test PERMACHEMS, ACCUVACS, y cubetas test están preprogramados y son fácilmente seleccionables. Además el DR 5000, espectrofotómetro UV-VIS, cubre incluso un rango más amplio de aplicaciones, incluyendo métodos programables por el usuario en el rango UV, así como espectros y análisis especiales en el campo de aguas potables y de cervezas.

ww

DW

PW

Para un nivel de versatilidad todavía mayor: espectrofotómetro UV-VIS DR 5000, p. ej. para espectros y todos los test de HACH LANGE;


libremente programable

Memorización de resultados manual

ACCUVAC PERMACHEM

pulgada

Soporte único, para múltiples tipos de cubetas

DR 2800 VIS: instrumento robusto para utilizar en el laboratorio e in situ

El sistema óptico fiable del DR 2800 asegura unos resultados correctos. Cada longitud de onda puede seleccionarse libremente y la memoria tiene capacidad para 50 métodos de usuario y hasta 500 valores medidos, junto con los 200 test preprogramados. Los tamaños de cubeta variables permiten realizar mediciones en rangos de medida amplios, desde la analítica de trazas hasta las altas concentraciones en los baños galvanoplásticos. Los menús fáciles de comprender y la gran pantalla táctil reducen la familiarización necesaria y evitan los errores.

DR 5000 UV-VIS: analítica de aguas exigente en el laboratorio

El espectrofotómetro UV-VIS DR 5000 es el fruto de la amplia experiencia de los fabricantes HACH y LANGE: sistema óptico de gran calidad, escaneados rápidos y un diseño ergonómico son indispensables en todo laboratorio de aguas exigente. El factor excepcional - la versatilidad del DR 5000 - se refleja en el soporte único para múltiples tipos de cubetas, en los módulos adicionales, en los softwares de aplicaciones especiales y, naturalmente, en los más de 200 métodos HACH LANGE instalados en fábrica.

- → Para más información acerca de los test para DR 2800 y DR 5000, véase la página 54
- → Especificaciones técnicas: véase la página siguiente

Más información en www.hach-lange.es, ref. de búsqueda "DR 2800" o "DR 5000", con descarga gratuita de folletos (DR 2800: DOC032.61.00437; DR 5000: DOC032.61.00432) y Manuales de instrucciones (DR 2800: DOC022.61.00720; DR 5000: DOC022.61.00654)

Datos de interés de los espectrofotómetros DR 2800 y DR 5000

Espectrofotómetro UV-VIS DR 5000 con soluciones específicas para cada sector

del agua potable: LZV571

Software de aplicación para la analítica Software de aplicación para análisis en fábricas de cerveza conforme a MEBAK: LZV570

Especificaciones técnicas	inuev	INUE	
	Espectrofotómetro VIS DR 2800	Espectrofotómetro UV-VIS DR 5000	
		con soporte único para múltiples tipos de	
		cubetas	
Ref.	LPV422.99.00001	LPV408.99.00001	
Tecnología del haz de referencia	,	la lámpara y las fluctuaciones de la red	
Modos operativos	Absorbancia (± 3 Abs), transmitancia (%), concentración		
Rango de longitud de onda	340–900 nm	190-1.100 nm	
Precisión de longitud de onda	± 1,5 nm	± 1 nm en el rango 200-900 nm	
Reproducibilidad de longitud de onda	0,1 nm	0,1 nm	
Resolución de longitud de onda	1 nm	0,1 nm	
Velocidad de escaneado	-	900 nm/min en intervalos de 1 nm	
Ancho de banda espectral	5 nm	2 nm	
Precisión fotométrica		bs; 1% a 0,5-2,0 Abs	
Linealidad fotométrica	< 0,5% a 2 Abs; 1% a > 2 Abs		
Luz difusa	< 0,1% absorbancia a 340 nm	< 0,05% absorbancia a 340 nm	
Lector de códigos de barras	Identificación automática de las cubetas-test de LANGE, incluyendo medición		
integrado (sistema IBR)	de las mismas en 10 puntos diferentes durante un solo giro para la eliminación de errores		
Alojamientos de cubetas	Para cubetas redondas de 13 mm (LANGE),	Soporte único para múltiples tipos de cubetas:	
	cubetas rectangulares de 1 pulgada (2,54 cm),	para cubetas redondas de 13 mm (LANGE),	
	10 mm, 50 mm, redonda de 1 pulgada (2,54 cm)	para cubetas rectangulares de 1 pulgada (2,54 cm),	
		10 mm, 20 mm, 50 mm, redonda de 1 pulgada (2,54 cm)	
Medida de flujo	Módulo manual de flujo "Pour-Thru"	Módulo "Sipper" automático para cubetas	
	(Ref. 5940400)	"Pour-Thru Cell" (Ref. LZV485)	
Cambiador	-	Módulo cambiador para un máximo de siete	
		cubetas rectangulares, 10 mm (Ref. A23620)	
Control de temperatura de	-	Módulo Peltier 15-50 °C, para cubetas	
las cubetas		rectangulares, 10 mm (Ref. LZV513)	
Pantalla	Pantalla de cristal líquido LCD retroiluminada de alta resolución (320 x 240 píxels, pantalla táctil)		
Almacenamiento de datos	500 valores medidos	1.000 valores medidos, espectros de absorción,	
		20 cinéticas en el tiempo	
Interfaces	1 interfaz USB para PC, 1 interfaz USB para	1 interfaz USB para PC, 2 interfaces USB para	
	impresora, teclado, memoria USB	impresora, teclado, memoria USB	
Clase de protección	IP 42	IP 31	
Alimentación	100-120 V; 200-240 V; 50/60 Hz; conmutación automática		
Acumulador de litio	Opcional (Ref. LZV551) -		
Dimensiones (Altura x Profundidad x	13 x 33 x 22 cm; 4,1/4,4 kg sin/con acumulador	20 x 50 x 45 cm; 15,5 kg	
Anchura), Peso			

Para información acerca de software adicional, cubetas, periféricos y otros accesorios para DR 2800 y DR 5000, véase la página 78; lista completa de accesorios, en la tienda de nuestra web www.hach-lange.es, ref. de búsqueda "LPV408" para DR 5000 o "LPV422" para DR 2800

PW

Para resultados seguros: **Espectrofotómetro XION**

cubetas abierto

- → Completa gestión de datos incluso sin PC
- → Espectros de longitud de onda variable
- → Mediciones tiempo dependientes en modo "Auto"
- → 100 test de LANGE disponibles
- → También como LICO 400 para medir el color de líquidos claros



XION - Gestión de datos para la analítica del agua

La base de datos permite almacenar y evaluar los datos de 2.500 mediciones sin necesidad de PC. Éstos se pueden exportar mediante el interfaz serie a un PC o a un sistema LIMS, o pueden copiarse a disquete. El Lange Net permite actualizar las curvas de calibrado en cualquier momento vía telefónica. Debido a la eliminación automática de valores atípicos, la fiabilidad de los resultados de las cubetas-test de LANGE es máxima.

LICO 400 - Determinación universal del índice colorimétrico

Con 24 escalas cromáticas internacionales, como p. ej. Hazen (Pt-Co), Gardner, Saybolt y ASTM D 1500, el LICO 400 es el colorímetro adecuado para muchos sectores. Es apropiado para medir soluciones coloreadas transparentes, también conforme a Pharm. Eur. y US-Pharm. Todas las escalas cromáticas pueden leerse directamente - con una medición en sólo una cubeta.

Kit de filtros para verificación LZV537. Patrones secundarios para autocontrol acorde a ISO:

→ Véase la página 80

Espectrofotómetro XION/Colorímetro LICO 400

•	
Referencia	LPV385 (XION), LMV184 (LICO 400)
Tipo	Espectrofotómetro con haz de referencia
Gama longitud onda	340-900 nm
Precisión	± 2 nm
longitud onda	
Modos de funcionam.	Concentración, absorbancia, transmitancia
Espectro	Espectro de longitud de onda (λ-scan), espectro
	en función del tiempo (t-scan)
Ajuste del cero	Automático
Compartimentos	Separados, para cubetas circulares o
de cubeta	rectangulares de hasta 10 x 50 mm

→ En algunos países, estos equipos son distribuidos por colaboradores específicos. En HACH LANGE le ampliaremos información al respecto.

Memoria	Para más de 2.500 valores medidos;
	Para métodos del usuario
Tecnología LOCK IN	Para eliminar la luz difusa
Pantalla grande	Para valores medidos, gráficos y tablas
Tecnología IBR*	Lectura del código de barras y medida de la
	cubeta circular en 10 puntos, incluida la
	eliminación de valores atípicos
Cubetas-test LANGE*	Totalmente pre-programadas
LANGE NET*	Terminal de datos integrado para actualizar las
	curvas de calibrado vía telefónica
Interfaces	1 interfaz serie y 1 paralelo
Cubetas-test LANGE* LANGE NET*	cubeta circular en 10 puntos, incluida la eliminación de valores atípicos Totalmente pre-programadas Terminal de datos integrado para actualizar las curvas de calibrado vía telefónica

* Espectrofotómetro XION solamente

→ Test LANGE para XION: véanse las páginas 54-65, Accesorios: véanse las páginas 77-82

Más información en www.hach-lange.es, ref. de búsqueda "XION" o "LICO 400", con descarga gratuita de folletos (XION: DOC032.61.00007; LICO: DOC032.61.00534) y Manuales de instrucciones (XION: BDA 475, LICO: DOC022.52.00524)

Laboratorios completos portátiles DREL y CEL – Para utilizar en el terreno

- → Configurados para diversas aplicaciones
- → Variedad de parámetros
- → Prácticos y robustos
- → Fácil manejo con reactivos listos para el análisis

Laboratorio completo compacto y estable

Hoy en día tenemos que ser capaces de llevar a cabo análisis fiables en todas partes. Los laboratorios portátiles contienen todo lo necesario para asegurar la obtención de resultados de medida inequívocos incluso fuera de los laboratorios ordinarios: eficiente tecnología de medida, accesorios prácticos y reactivos listos para usar. La superficie de trabajo integrada permite realizar análisis de una forma segura y fácil en cualquier sitio.

Con fotómetro, valorador digital y métodos electroquímicos

Los laboratorios completos DREL y CEL dan buen resultado con todo tipo de aguas:

- Aguas potables
- Aguas residuales
- Aguas de refrigeración y de calderas
- Aguas de proceso, y muchas más.
 Los instrumentos prácticos y estables también pueden ser utilizados sin problema alguno por personas inexpertas.

Lo último en versatilidad – El maletín analítico DREL 2800 con test para más de 20 parámetros para el análisis profesional de aguas puede ampliarse individualmente

Los colorímetros de la familia DR 800 son el corazón del maletín analítico CEL. Están configurados para diferentes gamas de parámetros

Para más información acerca de los laboratorios completos portátiles, también en otras configuraciones, visite www.hach-lange.es, ref. de búsqueda "DREL" o "CEL"

PW

Laboratorios completos CEL y DREL - una selección

	LABORATORIO COMPLETO CEL 890				LABORATORIO COMPLETO DREL 2800			
	Para agua de refr	igeración y a	igua de caldera	ıs	Para la analítica de aguas profesional			
Ref.	2688400				Bajo solicitud			
Contenido	Completo con colo				Completo con espectrofotómetro DR 2800, pHmetro			
	conductimetro SEN				opcional, sonda de conductividad, sonda de oxígeno con			
	(véase lista abajo),	, accesorios, r	nanuales, en do	s maletines	electrodos, turbidímetro opcional, valorador digital,			
	robustos.				reactivos (véase lista abajo), accesorios, manuales, en			
,		,			dos maletines robu			
PARÁMETRO	RANGO DE MEDIDA	MÉTODO*	N° DE TEST	REF.	RANGO DE MEDIDA	MÉTODO*	N° DE TEST	REF.
Acidez					10-4.000 mg/l	D	100	2272800
Alcalinidad	10-4.000 mg/l	D	100	2271900	10-4.000 mg/l	D	100	2271900
Amonio (como N)	-				0,01-0,50 mg/l	Р	100	2668000
Bacterias	Test de BART**	В	3 por test	2434809				
Bromo	0,04-4,50 mg/l	Р	100	2105669	0,05-4,50 mg/l	Р	100	Véase Cloro
Calcio	-				100-4.000 mg/l	D	100	2447500
Calcio	-				10-160 mg/l	D	100	2447200
Cloro, libre	0,03-5,0 mg/l	Р	100	1407099	0,02-2,00 mg/l	P	100	2105569
0.0.0,	0,02-2,0 mg/l	P	100	2105569	0/02 2/00 mg/.			2.00000
Cloro, total	0,03-5,0 mg/l	P	100	1406499	0,02-2,00 mg/l	Р	100	2105669
Cition of Cocur	0,02-2,0 mg/l	P	100	2105669	0,02 2,00 mg/		100	2100000
Cloruro	10-8.000 mg/l	D	100	2288000	10-10.000 mg/l	D	100	2288000
Cobre	6-210 μg/l	P	100	2603300	0,04-5,00 mg/l	P	100	2105869
Color	1-500 unidades	P	100		1-500 unidades	P	100	Sin reactivos
Color	Pt-Co	ļ ·		Sili reactivos	Pt-Co			Siii Teactivos
Conductividad	0,0001-199,9	Е		Sin reactivos	11 00	Е		Sin reactivos
Conductividad	mS/cm	_		Jiii reactivos		_		Siii redetivos
Cromo (VI)	-				0,01-0,70 mg/l	P	100	1271099
Dureza, total	10-160 mg/l	D	100	2448100	10-4.000 mg/l	D	100	2272000
Durcza, total	100-4.000 mg/l	J	100	2448000	0,6-220 °dH		100	2272000
Fósforo, orto	0,14-30mg/l	P	100	2244100	0,02-2,50 mg/l	P	100	2106069
Fósforo, total	a, i i a a mg, i				0,02-2,50 mg/l	P	100	2459000
Fosfonatos	0-125 mg/l	Р	100	2429700	0/02 2/00 mg/			2.00000
Hierro, total	0,03-3,0 mg/l	P	100	2105769	0,02-3,00 mg/l	Р	100	2105769
Manganeso	0,2-20,00 mg/l	P	100	2430000	0,1-20,00 mg/l	P	100	2430000
Molibdato	0,2-40 mg/l	P	100	2604100	0/1 20/00 mg/.			2.00000
Nitrato (como N)	- 10 mg/1		100	2001100	0,30-30,00 mg/l	Р	100	2106169
Nitrito	2-150 mg/l	Р	100	2107569	0,002-0,300 mg/l	P	100	2107169
Oxígeno, disuelto	0,002-1 mg/l	P	25	2501025	0,002 0,000 mg/1		100	2107100
pH	0-14 pH	E	20	Sin reactivos	4-9	Е	50	Sin reactivos
Secuestrantes	0-40 mg/l	D	100	1457799	. 0	_		5 cacc
	Na₄EDTA		.00	2434501				
	110425171			2284799				
				244932				
Sílice	0,02-1,60 mg/l	Р	100	2459300				
Sílice	3-200 mg/l	P	100	2244300	1-100 mg/l	P	100	2429600
Sólidos en suspensión	5-750 mg/l	P	.00	Sin reactivos	-	P	.00	Sin reactivos
Sulfato	-			Jiii reactivos	2-70 mg/l	P	100	2106769
Sulfito	4-400 mg/l	D	100	2272300	2 70 mg/r		.00	2100700
Sulfuro	. 100 11/9/1		.00	2272000	5-800 μg/l	P	100	2244500
Yodo	_				0,07-7,00 mg/l	P	100	Véase Cloro
Zinc	0,02-3,0 mg/l	P	100	2429300	0,07 7,00 mg/r	,	.00	vease cioro
ZIIIC	0,02-3,0 1119/1		100	2723300				

^{*}Método: P = Fotométrico; D = Valoración con valorador digital; E = Electroquímico, B = Biológico

^{**}Test de BART: por test, tres determinaciones de bacterias de hierro, bacterias reductoras de sulfato y formadoras de limos

[→] Para más información acerca de los test para DR 2800 y DR 5000, véanse las páginas 34-36

[→] Para más información acerca de los colorímetros DR 800 y el fotómetro DR 2800, véanse las páginas 32 y 34

[→] Más reactivos para DR 800 y DR 2800: véanse las páginas 46-65

DW PW MEL: Análisis microbiológico en cualquier sitio

- → Laboratorios portátiles completos
- → Amplia gama de parámetros
- → Test preparados
- → Fáciles de usar
- → Resultados significativos

El laboratorio microbiológico en un maletín

Diversos parámetros microbiológicos pueden medirse in situ. Los laboratorios MEL, totalmente equipados, contienen un incubador portátil que puede funcionar mediante conexión a la red o a pilas.

Respuestas del tipo sí/no o recuentos exactos de bacterias

El laboratorio MEL puede proporcionar ambas posibilidades. También en condiciones relativamente adversas pueden asegurarse unas prácticas de trabajo asépticas, desde el muestreo hasta el resultado final. Estos sistemas son adecuados para todo tipo de aguas.

Laboratorios medioambientales MEL para microbiología

DESCRIPCIÓN/ REF.	PARA LA DETERMINACIÓN DE	TIPO DE DETERMINACIÓN	KITS DE REACTIVOS	REF. DEL KIT
MEL MF/ 2569700	E. coli, coliformes totales Opcional: coliformes fecales, Pseudomonas, recuento de bacterias totales	Filtración por membrana	MF kit de reactivos A, con 200 embudos totalmente montados con filtros de membrana y placas de Petri para la estación de filtración II Caldo 200 M COLI BLUE24, 200 bolsas de muestreo	2619101
MEL PA/ 2569600	E. coli, coliformes totales Adicional: cloro, nitrato,	Presencia/ Ausencia	MEL kit de medios de cultivo P/A, con 50 test P/A desechables Caldo de cultivo con MUG, 50 bolsas de muestreo	2580000
	sólidos disueltos totales, pH	(si/no)	Kit de reactivo de cloro , cloro libre y cloro total Kit de reactivo de nitrato	2438800 1403599
MEL MPN/ 2569800	E. coli, coliformes totales Opcional: coliformes fecales, recuento de bacterias totales	Número más probable	Kit de reactivo MPN, sal nutricional para 25 test MPN de 5 tubos, con 135 tubos LT/Caldo de cultivo MUG, 30 tubos de caldo de bilis verde brillante, 30 dosificadores de inoculación estériles, 25 pipetas de 11 ml estériles, 25 bolsas de muestreo	2580200
MEL 850/ 2688800	E. coli, coliformes totales amonio, cloro, libre y total, color, sólidos disueltos totales, nitrato, nitrito, o-fosfato, sulfuro, pH, temperatura, turbidez	Presencia/ Ausencia (si/no)	Kit de reactivo MEL 850 Kit de reactivo de cloro, cloro libre y total	2691100 2438800

[→] Test microbiológicos: véase la página 70; accesorios, bajo solicitud

5

La singular gama de test fotométricos y visuales de HACH LANGE

La gama de productos HACH LANGE para el análisis del agua de forma visual y por fotometría es única: test para más de 70 parámetros en todos los rangos de medida principales, desde el simple "screening" hasta el control fiable de valores límite y, siempre, con un manejo sumamente cómodo. En combinación con un fotómetro o kit de evaluación visual de HACH LANGE, los test forman sistemas analíticos completos para todas las aplicaciones fotométricas sin excepción.

¡Test visuales – portátiles, rápidos y económicos!

Para obtener resultados rápidos in situ, HACH LANGE ofrece test probados sencillos, como, p. ej.

- Tiras de control
- Cubetas y discos de color
- Test de recuento de gotas
- Valorador digital

Análisis económicos para resultados semicuantitativos – sin instrumentos complejos.

Fotometría simple – sobres de reactivo en polvo y ACCUVAC

Especialmente apropiados para mediciones fotométricas en condiciones exigentes:

- Los sobres de reactivo en polvo son reactivos envasados individualmente con una caducidad de varios años.
- ACCUVACs: ampollas de vidrio cerradas al vacío que contienen cantidades medidas de reactivo.
 Fácil manejo, sin dispensación manual.

Precisión y manejo excelentes – cubetas-test

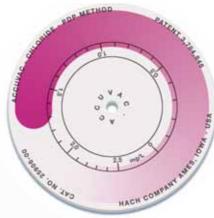
Cuando el análisis tiene que satisfacer los requisitos más severos, p. ej. controlar el cumplimiento de los límites reglamentarios, como alternativa a los métodos de referencia que implican una gran inversión de tiempo. Su calidad queda demostrada por el hecho de que, por vez primera, una cubeta-test – ISO DQO – ha sido aceptada como método de referencia.

Test visuales, p. ej. discos de color

Fotometría sencilla, p. ej. sobres de reactivo en polvo

Cubeta-test, p. ej. Amonio

Test visuales, sobres de reactivo en polvo y ACCUVAC


El análisis fotométrico de las aguas puede llevarse a cabo de forma sencilla – con sobres de reactivo en polvo y ampollas ACCUVAC. Contienen una cantidad de reactivo dosificada, tienen una larga vida útil y proporcionan resultados de medición fiables a un precio atractivo. Ambos test están disponibles para un buen número de parámetros y pueden evaluarse con los colorímetros de HACH LANGE o bien visualmente.

Discos y cubetas de color

Los test de comparación de color permiten realizar análisis de forma económica. Sólo hay que añadir un sobre de reactivo en polvo o una ampolla ACCUVAC a la muestra, comparar el color resultante con el disco de color y leer la concentración en el punto donde se produce el equilibrio colorimétrico. Como la escala cromática es continua, el disco de color es más preciso que las cubetas de color.

Para pedidos, infórmese en

→ Lista de reactivos en la página 47

Tiras de control

El método favorito. Tiras indicadoras fáciles de manejar proporcionan una visión general de la calidad del agua en cuestión de segundos.

En el laboratorio, las tiras de control proporcionan una indicación rápida del rango de medida o de las interferencias. In situ, son perfectas para el control de piscinas o aguas superficiales.

Para pedidos, infórmese en

→ Lista de reactivos en la página 47

DW

PW

Test de recuento de gotas + valorador digital

Los test de recuento de gotas son valoraciones sencillas: el reactivo se echa gota a gota a la muestra hasta que se produce un cambio de color. El resultado se toma de una tabla en base al recuento de las gotas. El valorador digital utiliza cartuchos de reactivo específicos del parámetro, que contienen reactivo suficiente para muchos análisis y son fáciles de cambiar.

Para pedidos, infórmese en

- → Lista de reactivos en la página 47
- → Valorador digital, página 52-53, 77

Sobres de reactivo en polvo - más de 100 métodos económicos

Existen sobres de reactivo en polvo para un buen número de parámetros y rangos de medida – más de 100 test en total. Los reactivos, sellados en sobres de papel de aluminio, duran muchos años. El reactivo se vierte en la cubeta de análisis conjuntamente con la muestra. La evaluación puede llevarse a cabo de forma visual, p. ej. con un disco de color, o bien con un fotómetro HACH LANGE. Tras lavarla concienzudamente, la cubeta de medición está lista para el siguiente análisis.

Para pedidos, infórmese en

→ Lista de reactivos en la página 54

ACCUVACs - la solución ingeniosa para 25 parámetros

El secreto del sistema ACCUVAC es el vacío existente en la cubeta de vidrio sellada que contiene una cantidad predosificada de reactivo. Para realizar el análisis sumerja la punta de ACCUVAC en la muestra y rómpala presionando ligeramente; el vacío aspirará la muestra al interior de la cubeta, asegurando al mismo tiempo una mezcla completa. El color resultante se mide visualmente o por fotometría. Los test ACCUVAC son particularmente apropiados para determinar sustancias volátiles como cloro y ozono en aguas potables y superficiales.

Para pedidos, infórmese en

→ Lista de reactivos en la página 54

La cantidad correcta de DPD con el SWIFTEST

El SWIFTEST es un dispensador que provee la cantidad correcta de DPD (dietil-p-fenilenodiamina) al pulsar un botón. Contiene reactivo suficiente para 250 test de cloro (cloro libre o total). Como alternativa práctica de precio ventajoso, el SWIFTEST es ideal para los laboratorios con gran cantidad de muestras y para el análisis in situ.

Para pedidos, infórmese en

→ Lista de reactivos en la página 80

LANGE Cubetas-test: Las originales

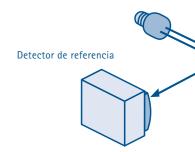
Detrás de las cubetas-test de LANGE hay un objetivo claro: el análisis de aguas como una solución completa. Las cubetas-test junto con los fotómetros y accesorios forman un sistema de medida extenso y completo – desde la toma y preparación de las muestras hasta el tratamiento de los datos de medición.

Manejo más fácil que nunca

Reactivos listos para usar, predosificados, simplifican sobremanera el análisis - se suprimen los procedimientos de lavado y los valores de blanco de reactivo, los reactivos están disponibles en la forma requerida, los resultados se calculan de modo automático. Las cubetas-test vienen en una caja totalmente equipada, por lo que pueden utilizarse al instante en cualquier parte.

Máxima fiabilidad

El fácil manejo de las cubetas-test elimina automáticamente muchas fuentes de error. La cubeta es un sistema cerrado que garantiza una seguridad máxima para el analista y el medio ambiente, hasta en las condiciones más adversas.


Resultados rápidos

Las cubetas-test no requieren preparaciones previas. No es preciso preparar las soluciones, y las laboriosas calibraciones y los cálculos que implican una gran inversión de tiempo ya no son necesarios, debido a que estas operaciones están integradas en el test. Además, el resultado de medición se obtiene inmediatamente.

La cubeta-test: el mismo recipiente para transporte, dispensación, digestión, reacción, medición y eliminación

Fuente de luz

Aprobadas para el control de valor umbral

Las cubetas-test están aprobadas oficialmente para los controles internos y oficiales exigidos legalmente. La validación sin problemas de todos los componentes del sistema mediante soluciones patrón específicas y soluciones ciegas para ensayos interlaboratorio proporcionan la seguridad necesaria.

Para más de 50 parámetros y más de 90 rangos de medida

Las cubetas-test cubren todas las aplicaciones de análisis de aguas, desde las aguas residuales industriales muy contaminadas hasta la detección de trazas de contaminación en el aqua potable.

Respetuosas por principio con el medio ambiente

Comparada con el análisis convencional, la cubeta-test contiene cantidades muy reducidas de productos químicos, conservando de este modo los recursos y ayudando al usuario a cumplir con sus obligaciones legales al asegurar una eliminación correcta.

Sólo con las cubetas-test de LANGE – a medida que la cubeta gira se detecta cualquier rayadura, suciedad o defecto del vidrio de la misma, y las mediciones tomadas en estos puntos son eliminadas

El sistema perfecto I: Fotometría totalmente automática

Las cubetas-test de LANGE se miden de forma correcta y fiable automáticamente – el usuario ni siquiera tiene que pulsar un botón. El fotómetro:

- Identifica la cubeta a partir de su código de barras (sistema IBR)
- Gira la cubeta y la mide en diez puntos diferentes durante un solo giro, eliminando los valores erróneos
- Calcula el resultado inmediatamente, p. ej. en mg/l
 En pocas palabras: ¡Introducir leer listo!

El sistema perfecto II: Precisión más seguridad

100% seguro en cada paso:

- Sin contacto con reactivos, gracias a DOSICAP ZIP
- Medición automática con sistema IBR
- Resultados totalmente fiables con patrones ADDISTA, soluciones para ensayos interlaboratorio ["Ring Test"] y solución standard para aseguramiento de calidad intralaboratorio

Legalmente aprobado.

El sistema perfecto III: Sumamente fácil de usar

Manejo sencillo que evita que se produzcan errores. El inventor de la cubeta-test sabe cómo conseguirlo: p. ej. con instrucciones breves mediante pictogramas en la tapa de la caja de cubetas. Listo al instante: realizar el análisis – medir – y ya está... sin tener que leerse páginas y más páginas.

La diversidad de rangos de medida

PARÁMETRO	NÚMERO	RANGOS DE MEDIDA
Ácidos orgánicos	1	50 - 2.500 mg/l ácido acético
Actividad de lodos	1	-
Alcohol	1	0,01 - 0,12 g/l
Almidón	1	2 – 150 mg/l
Aluminio	1	0,02 - 0,5 mg/l
Amonio	4	0,015 - 130 mg/l NH ₄ -N
AOX	2	0,05 – 0,5 mg/l
Baños de cobre, ácidos	1	2 – 100 g/l Cu
Baños de níquel, ácidos	1	5 – 120 g/l
Boro	1	0,05 – 2,5 mg/l
Cadmio	1	0,02 - 0,3 mg/l
Capacidad ácida KS 4,3	1	0,5 – 8,0 mmol/l
Carbonato, CO ₂	1	55 - 550 mg/l CO ₂
Cloruro	1	1 – 70 mg/l
Cianuro	2	0,01 - 0,6 mg/l
Cloro/Ozono	1	$0.05 - 2 \text{ mg/l Cl}_2 / 0_3$
Cobre	1	0,1 – 8 mg/l
Cromo (III + VI)	1	0,03 -1 mg/l
DBO ₅	2	0,5 – 1.650 mg/l
Dicetonas vicinales	1	0,015 - 0,5 mg/kg diacetilo
Dureza, dureza residual	2	0,1 - 100 mg/l Ca
(Ca + Mg)		0,15 – 50 mg/l Mg
DQO	7	5 – 60.000 mg/l
Estaño	1	0,1 – 2 mg/l
Fenol	2	0,05 – 200 mg/l
Fluoruro	1	0,1 – 1,5 mg/l

PARÁMETRO	NÚMERO	RANGOS DE MEDIDA
Formaldehido	1	0,5 – 10 mg/l
Fósforo (orto)	1	1,6 – 30 mg/l PO ₄ -P 5 – 90 mg/l PO ₄
Fósforo (orto + total)	3	0,05 - 20 mg/l PO ₄ -P 0,15 - 60 mg/l PO ₄
Hierro, Hierro (II + III)	2	0,2 - 6 mg/l
Magnesio	1	0,5 – 50 mg/l
Molibdeno	2	3 – 300 mg/l
Níquel	1	0,1 – 6 mg/l
Nitrato	2	0,23 – 35 mg/l NO ₃ -N 1 – 155 mg/l NO ₃
Nitrito	2	$0.015 - 6 \text{ mg/l NO}_2 - \text{N}$ $0.05 - 20 \text{ mg/l NO}_2$
Nitrógeno (total) LATON	3	1 – 100 mg/l TN _b
Plata	2	0,04 - 2.500 mg/l
Plomo	1	0,1 – 2 mg/l
Potasio	1	8 – 50 mg/l
Revelador de color CD 2/3/4	1	0,5 - 7,5 g/l
Sulfato	2	40 – 900 mg/l
Tensoactivos (catiónicos o aniónicos)	2	0,2 - 2 mg/l
Tensoactivos (no iónicos)	2	0,3 - 20.000 mg/l
TOC	5	3 – 3.000 mg/l TOC
Unidades "Bitter"	1	≥ 2 BU
Zinc	1	0,2 – 6 mg/l

ww

DW

Test visuales de HACH LANGE de un vistazo

Tiras de control

	RANGO DE MEDIDA	GRADUACIÓN DE ESCALA	TEST/ PAQ.	CÓD. PELIG.*	REF.
ALCALINIDAD como CaCO ₃					
	0 - 240 mg/l	0; 40; 80; 120; 180; 240	50		2744850
AMONIO como NIII. N					
AMONIO como NH ₄ -N	0 – 6,0 mg/l	0; 0,25; 0,5; 1; 3; 6	25		2755325
	0 - 6,0 mg/1	0, 0,25, 0,5, 1, 5, 6	25		2/33323
ARSÉNICO					
	0 – 500 ppb	0; 10; 30; 50; 70; 300; 500 ppb	100	T+, F	2822800
	0 – 4.000 ppb	0; 35; 75; 175; 1.500; 4.000 ppb	100	T+, F	
CLORO (libre + total)					
crono (nore i total)	0 – 10 mg/l	0; 0,5; 1,0; 2,0; 4,0; 10,0	50		2745050
	· · · · · · · · · · · · · · · · · · ·	2, 9 0 1 0 2 0 1 0 10 0	250		2793944
ol opupo					
CLORURO	"	V			
	30 – 600 mg/l	Variable; 10 – 20 pasos	40		2744940
	300 – 6.000 mg/l	Variable; 100 – 200 pasos	40		2751340
COBRE					
	0 – 3 mg/l	0; 0,2; 0,5; 1; 3	25		2745125
DUDE74 0.00					
DUREZA como CaCO ₃					
	0 – 425 mg/l	0; 25; 50; 120; 250; 425	50 250		2745250 2793844
			1.000		2793844
			1.000		2733020
FOSFATO (orto) como PO ₄					
	0 – 50 mg/l	0; 5; 15; 30; 50	50		2757150
HIERRO (total disuelto)					
,	0 - 5 mg/l	0; 0,15; 0,3; 0,6; 1; 2; 5	25	Xi	2745325
	g, .		1		
NITRATO + NITRITO					
	$0 - 50 \text{ mg/l NO}_3$	0; 1; 2; 5; 10; 20; 50	25		2745425
	$0 - 3 \text{ mg/l NO}_2$	0; 0,15; 0,3; 1; 1,5; 3	25		
рН					
• 	4 – 9	4; 5; 6; 7; 8; 9	50		2745650
TIRAS DE CONTROL 5-en-1					
5 parámetros por cada tira	0. 10/!	0, 0 5, 1 0, 2 0, 4 0, 10 0	F0		0755050
- Cloro (libre)	0 – 10 mg/l	0; 0,5; 1,0; 2,0; 4,0; 10,0	50		2755250
- Cloro (total)	0 – 10 mg/l	0; 0,5; 1,0; 2,0; 4,0; 10,0			
- Dureza total como CaCO ₃	0-25 mg/l	0; 1,5; 3; 7; 15; 25			
- Alcalinidad (total) CaCO ₃	0 -425 mg/l 0 -240 mg/l	0; 25; 50; 120; 250; 425 0; 40; 80; 120; 180; 240			
- pH	6,2 - 8,4	6,2; 6,8; 7,2; 7,8; 8,4			
hii	012 - 01 1	0,2,0,0,7,2,7,0,0,4			

^{→ *}Descripción símbolo de peligro, página 60

PW

Tiras de control Disco de color

Cubeta de color

Test de recuento de gotas

Valorador digital

Discos de color, cubetas de color y test de recuento de gotas

TIPO DE MEDICIÓN	MÉTODO	RANGO DE MEDIDA	LÍMITES DE DETECCIÓN	TEST/ PAQ.	CÓD. PELIG.*	REF.
ACIDEZ						
Valoración recuento gotas	Naranja de metilo/ fenolftaleína	5 – 100 mg/l CaCO ₃ 20 – 400 mg/l CaCO ₃	5 mg/l 20 mg/l	100		222301
ÁCIDO CIANÚRICO						
Turbidez CY-3	Turbidez	20 – 100 mg/l	20 mg/l	50		185102
AGUA on accita						
AGUA en aceite Volumétrica WO-1	Hidruro de calcio	0 – 1 %	0,05 mg/l	25	F	2237300
volumetrica vvo-1	Tilululo de Calcio	0 – 1 % 0	0,03 mg/l	25	1	2237300
			31			
ALCALINIDAD						
Valoración recuento gotas	Fenolftaleína	5 – 100 mg/l CaCO ₃ 20 – 400 mg/l CaCO ₃		100		2444301
Valoración recuento gotas	Fenolftaleína	385 – 8.500 mg/l CaCO ₃		100		2314500
AMONIO						
Cubeta de color	Reactivo de Nessler	0 – 2,5 mg/I NH ₄ -N	0,5 mg/l	25	T+, N	1252400
Cubeta de color	Salicilato	0 – 0,8 mg/I NH ₄ -N	0,2 mg/l	25		2266900
Cubeta de color	Salicilato	0 – 0,8 mg/l NH ₄ -N	0,2 mg/l	25	C, Xn	2267100
Disco de color NI-8	Reactivo de Nessler	0 – 3 mg/l NH ₄ -N	0,1 mg/l	100	T+, N	224100
Disco de color NI-SA	Salicilato	0 – 2,5 mg/l NH ₄ -N	0,1 mg/l	100	C, Xn	2428700
BROMO						
Cubeta de color	DPD	0 – 3,0 mg/l	0,6 mg/l	50		2194000
CIANUDO (UL)						
CIANURO (libre)	District	0 0 2	0.01	100		201002
Cubeta de color CYN-3	Piridina-pirazolona	0 – 0,3 mg/l	0,01 mg/l	100		201002
CLORO (libre)						
Cubeta de color	DPD	0 – 2,5 mg/l	0,5 mg/l	50		2060300
Disco de color CN-66F	DPD	0 – 3,5 mg/l	0,1 mg/l	100		223102
Disco de color	DPD	0 – 2,5 mg/l	0,1 mg/l	25		2502050
Disco de color CN-70F	DPD	0 – 0,7 mg/l	0,02 mg/l	200		1454201
		0 – 3,5 mg/l	0,1 mg/l			
CLORO (libre + total)						
Disco de color CN-66	DPD	0 – 3,5 mg/l	0,1 mg/l	50/50		223101
Disco de color CN-70	DPD	0 – 0,7 mg/l	0,02 mg/l	100/100		1454200
		0 – 3,5 mg/l	0,1 mg/l	,		
Disco de color CN-80	DPD	0 – 0,7 mg/l	0,02 mg/l	100/100		2129000
		0 – 3,0 mg/l	0,1 mg/l			
		0 – 10 mg/l tot.	0,5 mg/l tot.			
CLORO (total)						
Cubeta de color	DPD	0 – 2,5 mg/l	0,5 mg/l	50		2060400
Disco de color	DPD	0 – 2,5 mg/l	0,1 mg/l	25		2503050
Disco de color CN-66T	DPD	0 – 3,5 mg/l	0,1 mg/l	100		223103
Disco de color CN-70T	DPD	0 – 0,7 mg/l	0,02 mg/l	200		1454202
		0 – 3,5 mg/l	0,1 mg/l			
Pipeta CN-21P	Tiosulfato	10 – 200 mg/l	10 mg/l	100	Xi	2444400
Pipeta CN-65	Tiosulfato	0,2 - 4 mg/l	0,2 mg/l	100	Xi	225401
		1 – 20 mg/l	1,0 mg/l			

^{→ *}Descripción símbolo de peligro, página 60

Test visuales (2)

Discos de color, cubetas de color y test de recuento de gotas (2)

		, 1001 40 100401110	90 (_,			
TIPO DE MEDICIÓN	MÉTODO	RANGO DE MEDIDA	LÍMITES DE DETECCIÓN	TEST/ PAQ.	CÓD. PELIG.*	REF.
CLORURO						
Valoración recuento gotas CD-51	Nitrato de plata	500 – 10.000 mg/l 5.000 – 100.000 mg/l	500 mg/l 5.000 mg/l	100	T, C, N	208601
Valoración recuento gotas 8-P	Nitrato de plata	5 – 100 mg/l 20 – 400 mg/l	5 mg/l 20 mg/l	100	T, N	144001
COBRE						
Cubeta de color	Bicinconinato hidrosulfito	0 – 2,5 mg/l	0,5 mg/l	25	Xn	2182200
Cubeta de color de camino óptico largo	Porfirina	0 – 0,25 mg/l	0,05 mg/l	50	Xn	2193800
COBRE (libre)						
Disco de color CU-6	Bicinconinato	0 – 5 mg/l	0,1 mg/l	100	Xn	2194100
COBRE (libre + total)						
Disco de color CU-5	Bicinconinato/	0 – 5 mg/l	0,1 mg/l	100		1421300
	reducción de hidrosulfito	51.	-131.			
COLOR						
Disco de color CO-1	Patrón de	0 – 100 unidad.	5 unidad.			223400
	plationocobalto APHA	0 – 500 unidad.	25 unidad.			
CROMO (III, VI)						
Cubeta de color CH-12	Difenilcarbacida oxi- dación por hipobromito	0 – 1,5 mg/l	0,1 mg/l	50/50	T, C	222800
CROMO (VI)						
Cubeta de color	Difenilcarbacida	0 – 1,0 mg/l	0,2 mg/l	50	Xi	1252700
Disco de color CH-8	Difenilcarbacida	0 – 1,5 mg/l	0,1 mg/l	100	Xi	183400
Valoración recuento gotas CH-14	Difenilcarbacida	5 – 100 mg/l 50 – 1.000 mg/l	5 mg/l	100	Xi	222702
DETERGENTES (aniónicos)						
Disco de color DE-2	Azul de toluidina cloroformo	0 – 1,0 mg/l	0,05 mg/l	32	Xn	143203
DUREZA (total) como CaCO						
Valoración recuento gotas	-	17 – 510 mg/l	17 mg/l	100	Xi	145300
5-B		J.				
Valoración recuento gotas 5-EP	EDTA	17 – 510 mg/l	17 mg/l	100	Xn	145400
Valoración recuento gotas 5-EP MG-L	EDTA	20 – 400 mg/l	20 mg/l	100	Xn	145401
Valoración recuento gotas HA-71A	EDTA	1 – 20 mg/l	1 mg/l	100	Xi	145201
DUREZA (total + Ca + Mq)	como CaCO ₃					
Valoración recuento gotas HA-4P/MG-L	· ·	20 – 400 mg/l	20 mg/l	100	С	145701
Valoración recuento gotas HA-4P	EDTA	17 – 340 mg/l	17 mg/l	100	С	145700

^{→ *}Descripción símbolo de peligro, página 60

WW

DW

PW

Tiras de control Disco de color Cube

Cubeta de color Test de recuento

t de recuento Valorador digital de gotas

TIPO DE MEDICIÓN	MÉTODO	RANGO DE MEDIDA	LÍMITES DE DETECCIÓN	TEST/ PAQ.	CÓD. PELIG.*	REF.
FENOL						
Disco de color PL-1	Aminoantipirina	0 – 1 mg/l 0 – 5 mg/l	0,02 mg/l 0,1 mg/l	100	Xi, Xn, O	2483600
FORMALDEHIDO						
Comparación de color FM-2	MBTH	0; 0,5; 1,5	0,5	100	Xn, N	2267200
Valoración recuento gotas FM-1	Timolftaleína	0,05 – 1 % 0,5 – 10 %	0,05 % 0,50 %	100	Xn, Xi, F	2183100
FOSFATO (orto)						
Cubeta de color	Ácido ascórbico	0 – 5 mg/l PO ₄	1 mg/l	50	Xi	1252200
Disco de color PO-14	Método del estaño	0 – 4,5 mg/l PO ₄ 0 – 45 mg/l PO ₄	0,1 mg/l 1 mg/l	100	С	147500
Disco de color PO-19	Ácido ascórbico	0 – 1 mg/l PO ₄ 0 – 5 mg/l PO ₄ 0 – 50 mg/l PO ₄	0,02 mg/l 0,1 mg/l 1 mg/l	100	Xi	224800
Disco de color PO-19A filtración incl.	Ácido ascórbico	0 – 1 mg/l PO ₄ 0 – 5 mg/l PO ₄ 0 – 50 mg/l PO ₄	0,02 mg/l 0,1 mg/l 1 mg/l	100	Xi	224801
Disco de color/kit ACCUVAC	Ácido ascórbico	0 – 5 mg/l PO ₄	0,1 mg/l	25	Xi	2508050
FOSFATO (orto + meta)						
Disco de color PO-23	PhosVer3	0 – 5 mg/l PO ₄ 0 – 50 mg/l PO ₄	0,1 mg/l 1 mg/l	100	С	224902
Disco de color PO-23A filtración incl.	PhosVer3	0 – 5 mg/l PO ₄ 0 – 50 mg/l PO ₄	0,1 mg/l 1 mg/l	100	С	224903
FOSFONATO						
Disco de color PN-10	Digestión por UV ácido ascórbico	0 – 5 mg/l PO ₄ 0 – 125 mg/l PO ₄	1 mg/l	100		2113302
FÓSFORO (total)						
Disco de color PO-24	PhosVer3, digestión	0 – 1 mg/l PO ₄ 0 – 5 mg/l PO ₄ 0 – 50 mg/l PO ₄	0,02 mg/l 0,1 mg/l 1 mg/l	50	C, 0	225001
GLICOL en aceite o agua						
Colaración EG-1	Presencia/Ausencia	0 - > 150 mg/l		25	T, C	2185600
GLUTARALDEHIDO						
Disco de color		0,5 - 4.000 mg/l	0,5 mg/l	100	C, Xn	2587200
HIDRAZINA						
Disco de color HY-2	P-dimetilamino- benzaldehido	0 – 1,0 mg/l	0,02 mg/l	300	С	184900
HIDRÓGENO PERÓXIDO						
Valoración recuento gotas	Tiosulfato	0,2 - 2 mg/l	0,2 mg/l	100	Xi	2291700

1 – 10 mg/l

1 mg/l

^{→ *}Descripción símbolo de peligro, página 60

Test visuales (3)

Discos de color, cubetas de color y test de recuento de gotas (3)

•			• •	•		
TIPO DE MEDICIÓN	MÉTODO	RANGO DE MEDIDA	LÍMITES DE DETECCIÓN	TEST/ PAQ.	CÓD. PELIG.*	REF.
HIERRO						
Cubeta de color	1,10-fenantrolina	0 – 5 mg/l	1 mg/l	50	Xn	1400800
Cubeta de color	1,10-fenantrolina	0 – 10 mg/l	2 mg/l	50	Xn	2543500
Disco de color IR-18	1,10-fenantrolina	0 – 5 mg/l	0,1 mg/l	100	Xn	146400
Disco de color IR-18A	1,10-fenantrolina	0 – 1 mg/l	0,02 mg/l	100	Xn	146500
Disco de color IR-18B	1,10-fenantrolina	0 – 10 mg/l	0,2 mg/l	100	Xn	146401
Disco de color IR-21	TPTZ	0 – 0,1 mg/l 0 – 1,2 mg/l	0,01 mg/l 0,05 mg/l	100	Xn	2299300
Disco de color IR-24	FerroZine	0 – 0,2 mg/l 0 – 1,0 mg/l	0,002 mg/l 0,01 mg/l	50	Т	255600
Kit ACCUVAC	1,10-fenantrolina	0 – 10 mg/l	0,2 mg/l	25	Xn	2507050
HIERRO II						
Disco de color IR-18C	1,10-fenantrolina	0 – 10 mg/l	0,2 mg/l	100	Xn, N	2667200
HIPOCLORITO						
Valoración recuento gotas	Tiosulfato	5 – 15 % Cl ₂	0,05%	100	Xi	2687200
CH-HR	Tiosunaco	50 – 150 g/l Cl ₂	0,00 %	100	74	2007200
MANGANESO						
Disco de color MN-5	Periodato	0 - 3.0 mg/l	0,1 mg/l	100	Xi, 0	146700
Disco de color MN-PAN	PAN	0 – 0,7 mg/l	0,05 mg/l	50	T, N	2350800
MOLIBDENO						
Disco de color MO-LR	Complejo ternario	0 – 3 mg/l	0,1 mg/l	100		2359300
Disco de color MO-2	Ácido mercaptoacético	0 – 10 mg/l 0 – 50 mg/l	0,2 mg/l 1 mg/l	100	Xi, Xn	1419301
NUTRATO		0 – 50 mg/i	i mg/i			
NITRATO		0 70 // 110 11			V	
ACCUVAC, disco de color,	Reducción de cadmio	$0 - 50 \mathrm{mg/l} \mathrm{NO_3} - \mathrm{N}$	1 mg/l	25	Xn	2511050
cubeta de color	Deduced for december 1	0 50 m // NO N	10	50	TAL	1.400700
Cubeta de color	Reducción de cadmio	$0 - 50 \text{mg/l} \text{NO}_3 - \text{N}$	10 mg/l	50	T, N	1403700
Disco de color NI-11 Disco de color NI-14	Reducción de cadmio Reducción de cadmio	$0 - 50 \text{ mg/l NO}_3 - \text{N}$ $0 - 1 \text{ mg/l NO}_3 - \text{N}$	1 mg/l 0,02 mg/l	100	T, N	146803
Disco de Color NI-14	Reducción de Cadmio	1 – 10 mg/l NO ₃ -N	0,02 mg/l	100	T, N	1416100
NITRATO + NITRITO						
Disco de color NI-12	Reducción de cadmio	$0 - 50 \text{mg/l} \text{NO}_3 - \text{N}$	1 mg/l	100	T, N	1408100
	Diazotación	$0 - 0.5 \text{mg/l} \text{NO}_2 - \text{N}$	0,01 mg/l	.00	.,	. 100.00
NITRITO						
Cubeta de color	Diazotación	$0 - 1.0 \mathrm{mg/l} \mathrm{NO_2} - \mathrm{N}$	0,2 mg/l	50	Xi	2059600
Disco de color NI-6	Diazotación	0 – 100 mg/l NO ₂ 0 – 2.000 mg/l NO ₂	2 mg/l 40 mg/l	100	Xi	224000
Disco de color NI-15	Diazotación	0 - 0,5 mg/l NO ₂ -N	0,01 mg/l	100	Xi	2182000
OXIDANTES						
Disco de color DH-1	Reducción de hierro	0 – 0,065 mg/l DEHA	0,001 mg/l	100	С	2168200
		0 – 0,375 mg/l DEHA 0 – 1,7 mg/l DEHA	0,005 mg/l 0,023 mg/l			
		, J				

^{→ *}Descripción símbolo de peligro, página 60

WW

PW

Tiras de control Disco de color Cubet

Cubeta de color Test de recuento de gotas

de recuento Valorador digital

TIPO DE MEDICIÓN	MÉTODO	RANGO DE MEDIDA	LÍMITES DE DETECCIÓN	TEST/ PAQ.	CÓD. PELIG.*	REF.
OXÍGENO						
Disco de color/ACCUVAC	Winkler	0 – 1 mg/l	0,05 mg/l	25		2501050
Disco de color/ACCUVAC	Winkler	0 – 15 mg/l	0,2 mg/l	25	Xi	2515050
Valoración recuento gotas OX-2P	Winkler	0,2 – 4 mg/l 1 – 20 mg/l	0,2 mg/l 0,2 mg/l	100	C, T, N	146900
OZONO						
ACCUVAC	Indigo	0 – 0,25 mg/l	0,01 mg/l	12/24	Xn	2516050
ACCUVAC	Indigo	0 – 0,75 mg/l	0,02 mg/l	12/24	Xn	2517050
ACCUVAC	Indigo	0 – 1,5 mg/l	0,05 mg/l	12/24	Xn	2518050
Disco de color OZ-2	DPD	0 – 2,3 mg/l	0,05 mg/l	100		2064400
рН						
Cubeta de color	Azul de bromotimol	5,5 – 7,5	0,5	50		2067100
Cubeta de color	Rojo de fenol	6,5 – 8,5	0,5	50		1251900
Disco de color 17D	Dinitrofenol	3 – 5	0,1	200	T	147004
Disco de color 17F	Azul de bromotimol	5,5 – 8,5	0,1	200	T	147006
Disco de color 17H	Rojo de fenol	6,5 – 8,5	0,1	200	T	147008
Disco de color 17J	Azul de timol	7,8 – 10	0,1	200	T	147009
Disco de color 17M	Amarillo de alizarina	9,7 – 11,6	0,1	200	T	147010
Disco de color 17N	Indicador mixto	4 – 10	0,5	300	T	147011
Disco de color 17S	Púrpura de bromocresol	5,2 – 6,8	0,1	200	T	147014
SULFATO Turbidez SF-1	Turbidez	50 – 200 mg/l	50 mg/l	100		225100
Turorucz Sr - r	Turoiucz	30 - 200 mg/i	30 mg/i	100		223100
SULFITO SULFITO						
Valoración recuento gotas	Yodometría	1 – 20 mg/l	1 mg/l	100	Xi	148002
SU-5	Todometria	10 – 200 mg/l	10 mg/l		7	. 10002
SULFURO		J.	- Ji			
Disco de color HS-WR	Azul de metileno	0 – 0,55 mg/l	0,01 mg/l	60	T, C	223801
Disco de Color H3-WK	Azui de metheno	0 - 0,55 mg/l 0 - 2,25 mg/l	0,5 mg/l	60	1, C	223001
		0 - 2,25 mg/l	2,5 mg/l	30		
SÍLICE		0 - 11,23 mg/1	2,3 1119/1	30		
Disco de color SI-5	Azul de heteropoli	0 – 40 mg/l	1 mg/l	100	Xi, Xn	1455400
		0 – 800 mg/l	20 mg/l			
Disco de color SI-7	Azul de heteropoli	0 – 1 mg/l	0,02 mg/l	100	Xn, Xi	2255000
TANINO/LIGNINA						
Disco de color TA-3	Tirosina	0 – 15 mg/l 0 – 150 mg/l	0,5 mg/l 5 mg/l	100	T, F	193701
TRIAZOLES						
Disco de color TZ-1	Como benzotriazol	0 – 15 mg/l	0,5 mg/l	50		2167502
YODO		<u> </u>	, <u>J</u> ,			
Cubeta de color	DPD	0 – 2,5 mg/l	0,5 mg/l	50		2193900
Carried ac color	2.3	2,01119/1	o,o mg/i	00		2100000

^{→ *}Descripción símbolo de peligro, página 60

Test visuales (4)

Test con cartuchos para el valorador digital

ACIDEZ TO -4.000 mg/l CACO, Naranja de metilo/fenolítaleina 10 mg/l 10 mg/l 10 mg/l 2727800	RANGO DE MEDIDA	MÉTODO	LÍMITE DE DETECCIÓN	TEST/ PAQ.	CÓD. PELIG.*	REF.
ÁCIDO Véase manual Valoración con lejía ÁCIDOS (volátiles)	ACIDEZ					
Véase manual Valoración con lejía ÁCIDOS (volátiles) 100 - 2,400 mg/l Hidróxido sódico 100 100 2460200 ALCALINIDAD 100 - 4,000 mg/l 100 Xi 2271900 CALCIO CALCIO 100 - 4,000 mg/l CalVer/EDTA 10 mg/l 100 C 2447200 LORO (libre + total) DPD 0,05 mg/l 100 2445300 CLORO (total) 20 - 2,000 mg/l Tiosulfato 20 mg/l 100 2272500 CLORURO 100 - 8,000 mg/l Nitrato de mercurio 10 mg/l 100 1 mg/l 2272500 CROMATO 20 - 400 mg/l Nitrato de plata 10 mg/l 50 T, C, N 2288000 CROMO (VI) 20 - 400 mg/l Tiosulfato sódico 20 mg/l 100 2272400 DUREZA (Ca) 1 logalfato calver/EDTA 1 ruf 100 2447200 10 - > 100 dH Calver/EDTA 10 ruf 100	10 - 4.000 mg/l CaCO ₃	Naranja de metilo/fenolftaleína	10 mg/l	100	С	2272800
ÁCIDOS (volátiles) 100 – 2.400 mg/l Hidróxido sódico 100 100 2460200 ALCALINIDAD To -4.000 mg/l CaCO ₃ Fenolítaleina 10 mg/l 100 Xi 2271900 CALCIO 10 – 160 mg/l CalVer/EDTA 10 mg/l 100 C 2447200 10 – 4.000 mg/l CalVer/EDTA 100 mg/l 100 C 2447500 CLORO (libre + total) O ,05 mg/l 100 C 2447500 CLORO (libre + total) O 200 mg/l 100 C 2447500 CLORO (ctotal) CLORO (ctotal) CLORURO 10 – 8.000 mg/l Nitrato de mercurio 10 mg/l 100 1 + N 2272500 CROMATO CROMATO CROMATO 20 mg/l 100 100 2272400 CROMO (VI) 20 – 400 mg/l Tiosulfato sódico 20 mg/l 100 2272400						

[→] Más información acerca del valorador digital: véase la página 77

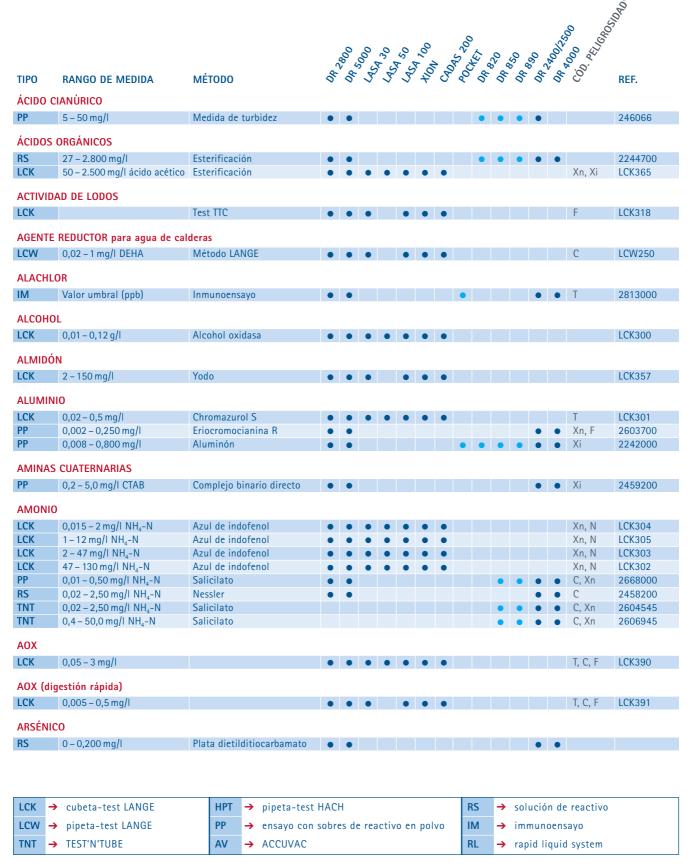
PW

Cubeta de color

Test de recuento de gotas

Valorador digital

RANGO DE MEDIDA	MÉTODO	LÍMITE DE DETECCIÓN	TEST/ PAQ.	CÓD. PELIG.*	REF.
HIPOCLORITO					
50 – 150 g/l Cl ₂	Yodométrico	50 g/l	100		2687000
LEJÍA					
Véase manual	Valoración ácida				
MAGNESIO					
1 – 20 mg/l	EDTA	1 mg/l	100	С	2447200
20 – 200 mg/l	EDTA	20 mg/l	100	С	2447500
NITRITO					
100 - 2.500 NaNO ₃	Cerimétrico		Approx.100)	2270701
OXÍGENO					
1 – 10 mg/l	Winkler	1 mg/l	50	T, C, N	2272200
SULFITO					
10 000	Vadamátuiaa	0.4.4	100	V:	2272200



- → Más información acerca del valorador digital: véase la página 77
- → Para más información acerca de la formulación de pedidos por Internet, véase la pagina 146
- → Realice sus pedidos de una forma sencilla y rápida

Test fotométricos de HACH LANGE de un vistazo

- Fotómetro y Espectrofotómetro, véase la página 29
- Analizador de Laboratorio, véase la página 83

Cubeta-test (LCK)

Sobre de reactivo en polvo (PP)

ACCUVAC (AV)

TIPO	RANGO DE MEDIDA	MÉTODO	8	80 4	14 SO	N. S.	SA S	T ON	· Ro	800 C	40	200	06.40	A SA	. 99.	REF.
ATRAZII	NA															
IM	ppb más bajo	Inmunoensayo	•	•									•	•	T	2762700
BAÑOS	ÁCIDOS DE CROMO															
LCK	50 – 450 g/l CrO ₃	Color intrínseco del baño	•	•	•	•	•	•	•						Xi	LCK213
BAÑOS	DE NÍQUEL (ácidos)															
LCK	5 – 120 g/l	Color intrínseco del baño	•	•	•	•	•	•	•						Xi	LCK237
BAÑOS	DE COBRE (ácidos)															
LCK	2 – 100 g/l Cu	Color intrínseco del baño	•	•	•	•	•	•	•						Xi	LCK229
BARIO																
PP	1 – 100 mg/l	Medida de turbidez	•	•									•	•	Xi	1206499
AV	1 – 100 mg/l	Medida de turbidez	•	•									•	•	Xi	2513025
BENZOT	RIAZOL o TOLILTRIAZOL															
PP	1 – 16 mg/l 1 – 20 mg/l	UV	•	•								•	•	•	Xn	2141299
BORO																
LCK	0,05 – 2,5 mg/l	Azometino H	•	•	•	•	•	•	•							LCK307
PP	0,2 – 14,0 mg/l	Método del carmín	•	•									•	•		1417099
PP	0,02 – 1,50 mg/l	Azometino H	•	•								•	•	•	Xi	2666900

www.hach-lange.es

Realice sus pedidos de una forma sencilla y rápida

1) No evaluable en DR 2400

Téngase en cuenta: ¡Los rangos de medida pueden variar de un instrumento a otro!

- → *Descripción símbolo de peligro, véase la página 60
- → Para más información acerca de la formulación de pedidos por Internet, véase la página 146
- → Realice sus pedidos de una forma sencilla y rápida

Test fotométricos (2)

					0	0	0	0	00		500)				35.	9 17 18 18 18 18 18 18 18 18 18 18 18 18 18	
ΟI	MÉTODO	0		8	000,40	14500	18 30 A	(AC 50	A TO	3	05 SK 00	tay do	040	04.0	06.30	00,00	00,000 00	REF.
	DPD			•	•						•	•	•	•	•	•		2105669
	DPD			•	•						•	•	•	•	•	•		2503025
	Cadión																T, N	LCK308
	Ditizona			•	•		_		-	-						•	T+, C, N	2242200
3																		
	Método L	LANGE		•	•	•	•	•	•	•								LCK362
(BONO																	
),	Indicador	or de pH				•												LCK388
2	marcador	, ac pii																2011000
/	Piridina-p	-pirazolona		•	•								•	•	•	•		2430200
	Á : L - L	1117																1.01/0.4.5
	Acido bar	arbitúrico-pii	ridina															LCK315
ra	i																	
	Método L	LANGE		•		•	•	•	•	•							Xi, N	LCK319
																	•	
12	Indofenol												•	•	•	•	C, Xn	2805145
CI	Indofenol	ol									•		•	•	•	•	C, Xn	2802246
	DPD				•													2105569
	DPD				•													2502025
	DPD																	1407099
	DPD			•	•										•	•		1407099
	DPD			•	•										•		Xi, Xn	2556900
	DPD											•	•	•	•	•		2105545
	222																	0500005
	DPD			•	•						•		•	•	•	•		2503025
	DPD DPD				•													1406499 1406499
	DPD				•													2105669
	DPD				•										•		C, Xn	2557000
	DPD			•	•										•	•	Xi	2563000
	DPD											•	•	•	•	•		2105645
1.1	DPD			•	•	•		•	•	•								LCW510
₂	DPD			•	•	•		•			•	• •	• •	• •	• •	•		

LCK	→ cubeta-test LANGE	HPT	→ pipeta-test HACH	RS	→ solución de reactivo
LCW	→ pipeta-test LANGE	PP	→ ensayo con sobres de reactivo en polvo	IM	→ immunoensayo
TNT	→ TEST'N'TUBE	AV	→ ACCUVAC	RL	→ rapid liquid system

- Fotómetro y Espectrofotómetro, véase la página 29
- Analizador de Laboratorio, véase la página 83

ww DW

PW

Cubeta-test (LCK)

Sobre de reactivo en polvo (PP)

ACCUVAC (AV)

				80	00,	80	200	00/2	د د	200	<u>ئ</u> چ	0 6	So o	9	boll,	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	
TIPO	RANGO DE MEDIDA	MÉTODO	8	8	7	3	18	, 10	S	, 6	5	8	8	8	8		REF.
CLORO/	OZONO/DIÓXIDO DE CLORO																
LCK	$0.05-2 \text{ mg/l Cl}_2/O_3$ $0.09-3.8 \text{ mg/l Cl}_2O$	DPD	•	•	•	•	•	•	•								LCK310
CLORUR	0																
LCK	1 – 70 mg/l 70 – 1.000 mg/l	Tiocianato de hierro (III)	•	•	•	•	•	•	•							T, C	LCK311
RS	0,1 – 25,0 mg/l	Tiocianato de mercurio	•	•										•	•	T, C, F	2319800
COBALT	0																
PP	0,01 – 2,00 mg/l	PAN	•	•										•	•	T	2651600
COBRE																	
LCK	0,01 – 1 mg/l	Ácido disulfónico de batocuproína	•	•	•		•	•	•								LCK529
LCK	0,1 – 8 mg/l	Ácido disulfónico de batocuproína	•	•	•	•	•	•	•								LCK329
PP	2 – 210 μg/l	Porfirina	•	•									•	•	•	Xn	2603300
AV	0,04 – 5,00 mg/l	Bicinconinato	•	•						•			•	•	•	Xn	2504025
PP	0,04 – 5,00 mg/l	Bicinconinato	•	•						•			•	•	•		2105869
COLOR																	
RS	5 – 500 unidades	Patrón de platino-cobalto	•	•									•	•	•		
СКОМО																	
LCK	0,005 – 0,25 mg/l	Difenilcarbacida	•	•	•		•	•	•							Xn, Xi	LCS313
PP	0,01 – 0,70 mg/l	Oxidación por hipobromito	•	•							•	•	•	•	•	T, C	2242500
CROMO	(III + VI)																

LCK 0,03 – 1 mg/l

www.hach-lange.es

Realice sus pedidos de una forma sencilla y rápida

1) No evaluable en DR 2400

Téngase en cuenta: ¡Los rangos de medida pueden variar de un instrumento a otro!

- → *Descripción símbolo de peligro, véase la página 60
- → Para más información acerca de la formulación de pedidos por Internet, véase la página 146

Difenilcarbacida

→ Realice sus pedidos de una forma sencilla y rápida

DW PW

Test fotométricos (3)

				0	0	.0	,0	00		200	۸ .		_	_	9/2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7
TIPO	RANGO DE MEDIDA	MÉTODO	90	00,40	145.00	SA SA	SA SA	T OF THE	Bo	00 3 400 YOU	40	040	00 %	20 1	0,40	Co, 200 00 Co, AEI/GAOS.	REF.
скомо	(VI)																
٩V	0,01 – 0,70 mg/l	1,5-difenilcarbohidracida	•	•									•	•	•	Xi	2505025
PP	0,01 - 0,70 mg/l	1,5-difenilcarbohidracida	•	•						•			•	•	•	Xi	1271099
200																	
OBO ₅																	
-CK	0,5 – 12 mg/l	Método de dilución	•	•	•	•	•	•	•							Xi	LCK554
_CK	4 – 1.650 mg/l	Método de dilución	•													C, 0	LCK555
DICETO	NAS VICINALES																
LCK	0,015 – 0,5 mg/kg diacetilo	MEBAK	•	•					•							T, N	LCK242
_	O DE CLORO															,	
٩V	0,01 – 1,00 mg/l ClO ₂	Rojo de clorofenol		•										•		Xi	2242300
AV	0,04 - 5,00 mg/l ClO ₂	DPD/glicina	•	•						•	•	•	•	•	•		2771000
HPT	0,003 – 0,500 mg/l ClO ₂	Amaranto	•	•						•	•	•	•	•	•		HPT240
PP	0,04 - 5,00 mg/l ClO ₂	DPD/glicina	•	•						•	•	•	•	•	•		2770900
000																	
LCK	5 – 60 mg/l	Ácido cromosulfúrico	•	•	•	•	•		•							T, C	LCK414
LCK	15 – 150 mg/l	Ácido cromosulfúrico	•	•	•	•	•	•	•							T, C	LCK314
LCK	50 – 300 mg/l	Ácido cromosulfúrico	•	•	•	•	•	•	•							T, C	LCK614
LCK	150 – 1.000 mg/l	Ácido cromosulfúrico	•	•	•	•	•	•	•							T, C	LCK114
LCK	100 – 2.000 mg/l	Ácido cromosulfúrico	•	•	•	•	•	•	•							T, C	LCK514
LCK	1.000 – 10.000 mg/l	Ácido cromosulfúrico	•	•	•	•	•	•	•							T, C	LCK014
LCK	5.000 – 60.000 mg/l	Ácido cromosulfúrico	•	•	•	•	•	•	•							T, C	LCK914
TNT	0 – 40 mg/l	Ácido cromosulfúrico												● ¹⁾	•	С	2415851
TNT	3 – 150 mg/l	Ácido cromosulfúrico												•	•	C	2125851
TNT	20 – 1.500 mg/l	Ácido cromosulfúrico										•	•	•	•	T, C	2125951
TNT	30 – 1.000 mg/l	Manganeso (III) Digestión por reactor									•	•		•	•	С	2623451
TNT	200 – 15.000 mg/l	Ácido cromosulfúrico										•	•	•	•	T, C	2415951
ogo iso																	
LCK	0 – 1.000 mg/l	Ácido cromosulfúrico	•	•	•	•	•	•	•							T, C	LCI400
LCK	0 – 150 mg/l	Ácido cromosulfúrico	•	•	•	•	•	•	•							T, C	LCI500
DUREZA	A (Ca + Mg)																
RL	0,07 - 4,00 mg/l CaCO ₃	Calmagite	•	•							•	•	•	•	•	С	2319900
RL	1 – 1.000 μg/l CaCO ₃	Clorofosfonazo	•	•										•	•		2603100
LCK	1 – 20 °dH	Metalftaleina	•	•	•	•	•	•	•								LCK327
	5 – 100 mg/l Ca																
	3 – 50 mg/l Mg																
	(residual, Ca + Mg)															V:	I CV 427
LCK	0,02 – 0,6 °dH 0,1 – 2 mg/l Ca				•	•	•									Xi	LCK427
	0,15 – 2 mg/l Mg																
ESTAÑO																	
LCK	0,1 – 2 mg/l	Piridinafluorona (PYF)	•		•	•	•	•	•							T, 0	LCK359
LCK -	cubeta-test LANGE	HPT → pipeta-test	HAC	Н						R	S	→	solu	ıciór	ı de	reactivo	
LCK -		HPT → pipeta-test PP → ensayo con			e rea	activ	o en	poly	vo	R				uciór nunc			

- Fotómetro y Espectrofotómetro, véase la página 29
- Analizador de Laboratorio, véase la página 83

PW

Cubeta-test (LCK)	Cubeta	a-test (LCK)	Sobre de re en polvo		ACCUVAC (AV)								0				ç		*080
PP	TIPO	RANGO DE MEDI	IDA	MÉTODO		945	00,00	145,000	(45,30	145,50	to, 100	No.	200	80 8 80 8	040	06.40	00000	00,00 00,000 0,00 0,00 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0	REF.
LCK	FENOL																		
CK 5-200 mg/l 4-aminoantipirina • • • • • • • Xn, 0 LCK346	PP	0,002 - 0,200 mg/	I	4-aminoanti	pirina	•	•									•	•	Xi, Xn	2243900
FLUORURO AV		0,05 – 5 mg/l		4-aminoanti	pirina	•	•	•	•	•	•	•						Xn	LCK345
AV	LCK	5 – 200 mg/l		4-aminoanti	pirina	•	•	•	•	•	•	•						Xn, 0	LCK346
AV	FLLIORI	IRO																	
CK				CDADNC														C	2506025
RS													•	•	•	•	•	C	
FORMALDEHIDO											•	•						C	
CCK	II.3	0,02 - 2,00 1119/1		כווטא וכ										•				C	44443
CK	FORMA	LDEHIDO																	
CK	LCK	0,01 – 1 mg/l		Acetilacetor	าล		•	•		•	•	•							LCS325
FOSFONATO PP	LCK			Acetilacetor	na	•	•	•	•	•	•	•							LCK325
FÓSFORO (orto) Persulfato/oxidación UV Image: Control of the control	PP	3 – 500 μg/l		MBTH		•	•									•	•	Xn	2257700
FÓSFORO (orto) Persulfato/oxidación UV Image: Control of the control																			
FÓSFORO (orto) AV 0,02 - 2,50 mg/l PO₄ PhosVer 3 ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■																			
FÓSFORO (orto) AV 0,02 - 2,50 mg/l PO₄ PhosVer 3 ● ● ● ● ● ● ○ Xi 2508025 AV 0,3 - 45,0 mg/l PO₄ Molibdovanadato ● ● ● ● ○ Xi 2106069 RL 0,3 - 45,0 mg/l PO₄ Molibdovanadato ● ● ○ Xi 2106069 RL 19 - 3,000 µg/l PO₄ Molibdovanadato ● ● ○ C 2678600 0,04 - 30,00 mg/l PO₄ Aminoácido ● ● ○ C 2076032 RS 0,3 - 45,0 mg/l PO₄ Molibdovanadato ● ● ○ C 2742545 TNT 0,06 - 5,00 mg/l PO₄ Molibdovanadato ● ● ○ C 2742545 TNT 1,0 - 100,0 mg/l PO₄ P PO₄-P Vanadato-molibdato ● ○ ○ C 2742545 LCK 1,6 - 30 mg/l PO₄-P Vanadato-molibdato ● ○ ○ C 2742545 LCK 0,01 - 0,5 mg/l PO₄-P Vanadato-molibdato ● ○ ○ C 2742545 LCK 0,05 - 1,5 mg/l PO₄-P Azul de fosfomolibdeno ● ○ ○ C 2742545 LCK 0,05 - 1,5 mg/l PO₄-P Azul de fosfomolibdeno ● ○ ○ C 2742545 LCK 0,5 - 5 mg/l PO₄-P Azul de fosfomolibdeno ● ○ ○ C 2742545 LCK 2 - 20 mg/l PO₄-P Azul de fosfomolibdeno ● ○ ○ C 2742545 LCK 2 - 20 mg/l PO₄-P Azul d	PP	0,02 - 2,50 mg/l		Persulfato/o	xidación UV	•	•							•	•	•	•	Xi, Xn, O	2429700
AV 0,02 - 2,50 mg/l PO₄ PhosVer 3 ■ ■ ■ ■ Xi		1,0 – 125,0 mg/l																	
AV 0,02 - 2,50 mg/l PO₄ PhosVer 3 ■ ■ ■ ■ Xi	Γάςτου	10 (auta)																	
AV 0,3 - 45,0 mg/l PO₄ Molibdovanadato ● ● ● C 2525025 PP 0,02 - 2,50 mg/l PO₄ PhosVer 3 ● ● XI 2106069 RL 0,3 - 45,0 mg/l PO₄ Molibdovanadato ● C 2678600 RL 19 - 3.000 µg/l PO₄ Acido ascórbico ● C 2678600 0,04 - 30,00 mg/l PO₄ Molibdovanadato ● C 2076032 TNT 0,06 - 5,00 mg/l PO₄ PhosVer 3 ● C 2742545 TNT 1,0 - 100,0 mg/l PO₄ Molibdovanadato ● E Xi 2767345 LCK 1,6 - 30 mg/l PO₄ PO₄ Vanadato-molibdato ● ● Xi 2767345 LCK 1,6 - 30 mg/l PO₄ PO₄ Azul de fosfomolibdeno ● ● ● ● Xi 2767345 LCK 0,01 - 0,5 mg/l PO₄ PO₄ Azul de fosfomolibdeno ● ● ● ● ● ● C, Xn LCK349 LCK 0,5 - 5 mg/l PO₄ Azul de fosfomolibdeno ● ● ● ● ● C, Xn </td <td></td> <td></td> <td>0</td> <td>DI M o</td> <td></td> <td>\/:</td> <td></td>			0	DI M o														\/:	
PP						•	•						•	•	•	•	•		
RL 0,3 - 45,0 mg/l PO₄ Molibdovanadato ■ ■ C 2076049 RL 19 - 3.000 μg/l PO₄ Ácido ascórbico ■ ■ ■ C 2678600 0,04 - 30,00 mg/l PO₄ Aminoácido ■ ■ ■ T, C 2244100 RS 0,3 - 45,0 mg/l PO₄ Molibdovanadato ■ ■ C 2076032 TNT 0,06 - 5,00 mg/l PO₄ PhosVer 3 ■ ■ C 2742545 TNT 1,0 - 100,0 mg/l PO₄ Molibdovanadato ■ ■ Xi 2767345 LCK 1,6 - 30 mg/l PO₄ P Vanadato-molibdato ■ ■ ■ E Xi 2767345 LCK 0,01 - 0,5 mg/l PO₄ P Azul de fosfomolibdeno ■ ■ ■ ■ E C, Xn LCK349 LCK 0,05 - 1,5 mg/l PO₄ P Azul de fosfomolibdeno ■ ■ ■ ■ E C, Xn LCK349 LCK 0,5 - 5 mg/l PO₄ P Azul de fosfomolibdeno ■ ■ ■ E C, Xn LCK348 LCK 2 - 20 mg/l PO₄ P Azul de fosfomolibdeno ■ ■ ■ E C, Xn LCK350 LCK 2 - 20 mg/l PO₄ P Azul de fosfomolibdeno ■ ■ ■ E E C, Xn LCK350 TNT 0,06 - 5,00 mg/l PO₄ PhosVer 3 con hi					adato	•	•								•	•	•		
RL 19 - 3.000 µg/l PO₄ Acido ascórbico Aminoácido Aminoácido RS 0,3 - 45,0 mg/l PO₄ Molibdovanadato C 2244100 C 2267345 C 22673					1.4	•	•						•	•	•	•			
Note			т			•	•									•	•		
RS	KL					•													
TNT	DC												•	•		•			
TNT 1,0 - 100,0 mg/l PO₄ Molibdovanadato LCK 1,6 - 30 mg/l PO₄ -P Vanadato-molibdato 5 - 90 mg/l PO₄ -P Vanadato-molibdato LCK 0,01 - 0,5 mg/l PO₄ -P Azul de fosfomolibdeno 0,03 - 1,5 mg/l PO₄ -P Azul de fosfomolibdeno 0,15 - 4,5 mg/l PO₄ -P Azul de fosfomolibdeno 0,15 - 4,5 mg/l PO₄ -P Azul de fosfomolibdeno 5 - 15 mg/l PO₄ -P Azul de fosfomolibdeno 5 - 15 mg/l PO₄ -P Azul de fosfomolibdeno 6 - 60 mg/l PO₄ -P Azul de fosfomolibdeno 6 - 60 mg/l PO₄ -P Azul de fosfomolibdeno 6 - 60 mg/l PO₄ -P Azul de fosfomolibdeno 6 - 60 mg/l PO₄ -P Azul de fosfomolibdeno 6 - 60 mg/l PO₄ -P Azul de fosfomolibdeno 6 - 60 mg/l PO₄ -P Azul de fosfomolibdeno 6 - 60 mg/l PO₄ -P Azul de fosfomolibdeno 6 - 60 mg/l PO₄ -P Azul de fosfomolibdeno 6 - 60 mg/l PO₄ -P Azul de fosfomolibdeno 6 - 60 mg/l PO₄ -P Azul de fosfomolibdeno 6 - 60 mg/l PO₄ -P Azul de fosfomolibdeno 6 - 60 mg/l PO₄ -P Azul de fosfomolibdeno 6 - 60 mg/l PO₄ -P Azul de					auatu		•									•			
LCK 1,6 - 30 mg/l PO₄ - P Vanadato-molibdato 5 - 90 mg/l PO₄ - P Vanadato-molibdato FÓSFORO (orto + total) LCK 0,01 - 0,5 mg/l PO₄ - P Azul de fosfomolibdeno 0,03 - 1,5 mg/l PO₄ - P Azul de fosfomolibdeno Image: Composition of the position of the positi			т		adato									•	•				
FÓSFORO (orto + total) LCK																			
FÓSFORO (orto + total)LCK $0,01-0,5 mg/l PO_4-P$ $0,03-1,5 mg/l PO_4$ Azul de fosfomolibdeno• • • • • • • • • • • • • • • • • • •	LCK		1	vallauatu-li	ionouato													C	LCK043
LCK 0,01 - 0,5 mg/l PO₄ - P 0,03 - 1,5 mg/l PO₄ Azul de fosfomolibdeno ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●		3 30 mg/11 0 ₄																	
CK 0,05 - 1,5 mg/l PO ₄ Azul de fosfomolibdeno • • • • • • • • • C, Xn LCK349	FÓSFOR	0 (orto + total)																	
LCK 0,05 - 1,5 mg/l PO₄ - P	LCK			Azul de fosfo	omolibdeno	•	•	•		•	•	•						C, Xn	LCS349
0,15 - 4,5 mg/l PO ₄ LCK	LCK			Anul de fre	iomolib de = =													C V-	LCK240
LCK 0,5 - 5 mg/l PO₄ - P Azul de fosfomolibdeno ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●	LCK		•	Azui de tost	omonoaeno					•	•	•						C, An	LCK349
5 − 15 mg/l PO₄ LCK 2 − 20 mg/l PO₄ − P 6 − 60 mg/l PO₄ TNT 0,06 − 5,00 mg/l PO₄ PhosVer 3 con hidrólisis ácida FÓSFORO (total) TNT 0,06 − 3,50 mg/l PO₄ PhosVer 3 con digestión ácida de persulfato	ICK			Azul da fact	omolihdeno													CYn	I CK340
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	LCK	5 – 15 mg/l PO ₄		Azul de 10st	omonoueno													C, All	LCN348
TNT 0,06 − 5,00 mg/l PO ₄ PhosVer 3 con hidrólisis ácida FÓSFORO (total) TNT 0,06 − 3,50 mg/l PO ₄ PhosVer 3 con digestión ácida de persulfato	LCK			Azul de fosf	omolibdeno	•	•	•	•	•	•	•						C, Xn	LCK350
hidrólisis ácida FÓSFORO (total) TNT																			
FÓSFORO (total) TNT	TNT	0,06 - 5,00 mg/l P	04											•	•	•	•	C, O, Xn	2742745
TNT $0.06 - 3.50 \mathrm{mg/l}$ PhosVer 3 con digestión ácida de persulfato				hidrólisis ác	ida														
TNT $0.06 - 3.50 \mathrm{mg/l}$ PhosVer 3 con digestión ácida de persulfato	EÓSEOR	(total)																	
ácida de persulfato			0	DI V	1													0 1/ 0	07400:5
	INI	0,06 – 3,50 mg/l P	U ₄											•		•	•	C, Xn, 0	2/42645
	TNT	1,0 - 100,0 mg/l P	04													•	•	C, Xn, 0	2767245

1) No evaluable en DR 2400

Téngase en cuenta: ¡Los rangos de medida pueden variar de un instrumento a otro!

digestión ácida de persulfato

→ *Descripción símbolo de peligro, véase la página 60

WW DW PW

Test fotométricos (4)

															2	dr.
TIPO	RANGO DE MEDIDA	MÉTODO	80	000,40	64° 000	(4 3°	145,50	to, 100	Spark	00 500	00 80 00 00 00 00 00 00 00 00 00 00 00 0	02,820	08,00	00000	00,000 00	REF.
HIDRAZ	INA															
AV	4 – 600 μg/l	P-Dimetilamino- benzaldehido	•	•								•	•	•	С	2524025
LCW	0,01 – 2 mg/l	4-Dimetilamino- benzaldehido	•	•	•		•	•	•							LCW025
RS	4 – 600 μg/l	P-Dimetilamino- benzaldehido	•	•								•	•	•		179032
HIERRO																
AV	0,02 – 3,00 mg/l	FerroVer	•	•						•	•	•	•	•	Xn	2507025
AV	0,012 – 1,800 mg/l	TPTZ	•	•						•	•	•	•	•	Xi	2510025
LCK	0,2 – 6 mg/l	1,10-fenantrolina	•	•	•	•	•	•	•							LCK321
LCW	0,01 – 1 mg/l	1,10-fenantrolina	•	•	•		•	•	•							LCK521
LCW	0,005 – 0,250 mg/l 0,05 – 2,00 mg/l	FerroZine	•	•	•		•	•	•						С	LCW021
PP	0,01 – 1,80 mg/l	FerroMo	•	•							•	•	•	•		2544800
PP	0,02 - 3,00 mg/l	FerroVer	•	•						•	•	•	•	•	Xn	2105769
PP	0,009 - 1,400 mg/l	FerroZine	•	•								•	•	•	T, N	230166
PP	0,012 - 1,800 mg/l	TPTZ	•	•						•	•	•	•	•	Xn	2608799
RL	0,009 – 1,400 mg/l	FerroZine	•	•								•	•	•	T, N	230149
RS	0,009 – 1,400 mg/l	FerroZine	•	•								•	•	•	T, N	230153

- → Para más información acerca de la formulación de pedidos por Internet, véase la página 146
- → Realice sus pedidos de una forma sencilla y rápida

PW

• Fotómetro y Espectrofotómetro, véase la página 29

• Analizador de Laboratorio, véase la página 83

Cubeta-test (LCK)

Sobre de reactivo en polvo (PP)

ACCUVAC (AV)

	Cii poive	(11)													,	ક જ) [']
				0	0	0	0	0		00	,				Ň		
				ر کھی	o .	್ಲ್ .	<i>چ</i> .	, ,	. ,	5,	ر د کو	0	00	80	0	9 5th	
TIPO	DANCO DE MEDIDA	MÉTODO	&	V &	S &	\$ 5	5	to, 100	P), S	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	, &	. ~	ر چو	2	60,00° (0)	REF.
IIPU	RANGO DE MEDIDA	METODO	9	9	\sim	~	~	+	Ċ.	Q	9	9	9	0	9		KEF.
HIERRO	(II)																
AV	0,02 - 3,00 mg/l	1,10-fenantrolina													•	Xn,N	2514025
PP	0,02 - 3,00 mg/l	1,10-fenantrolina	•	•							•	•	•	•	•	Xn,N	103769
HIERRO	(II + III)																
LCK	0,2 – 6 mg/l	1,10-fenantrolina	•	•	•	•	•	•	•							Xi	LCK320
,	,																
INDICE	FOTOMÉTRICO DE YODO																
LCK	Valor de yodo > 0,2	MEBAK	•	•					•							F	LCK240
	ovio-uo																
	E DE OXÍGENO																
PP	5 – 600 μg/l DEHA	Reducción de hierro	•	•									•	•	•	С	2446600
MAGNE	SIO																
		10.17															1.01/0.00
LCK	0,5 – 50 mg/l	Metalftaleína					•										LCK326
MANGA	NESO																
LCW		Formaldoxima														T, C	LCW032
LCVV	0,2 – 5 mg/l 0,02 – 1 mg/l	Formaldoxima		•			•									1, C	LCVV032
PP	0,02 - 1 mg/l 0,2 - 20,0 mg/l	Oxidación por periodato														Xi, O	2430000
PP	0,007 - 0,700 mg/l	PAN														T, N	2651700
11	0,007 = 0,700 mg/1	LAIV														1, 14	2031700
MENTO	L (en destilado)																
LCK	0,5 - 15 mg auf 100 ml	Método LANGE	•	•	•		•									С	LYW185
	3																
MERCU	RIO																
RS	0,1 – 2,5 μg/l	Concentración de vapor frío	•	•										•	•	T, C, 0	2658300
MOLIBE	OATO/MOLIBDENO																
AV	0,3 – 40,0 mg/l	Ácido mercaptoacético	•	•									•	•	•	Xn	2522025
PP	0,3 – 40,0 mg/l	Ácido mercaptoacético	•	•									•	•	•	Xi, Xn	2604100
PP	0,02 – 3,00 mg/l	Complejo ternario	•	•						•		•	•	•	•		2449400
LCK	3 – 300 mg/l	Ácido tioglicólico	•	•	•		•		•							T	LCK330
NITRAT	n																
		Deducation de la dusta														TAL	2511025
AV	0,1 – 10,0 mg/l NO ₃ -N	Reducción de cadmio	•	•									•	•	•	T, N	2511025
AV LCK	0,3 – 30,0 mg/l NO ₃ -N 0,23 – 13,5 mg/l NO ₃ -N	Reducción de cadmio	•				_							•	•	T, N C	2511025 LCK339
LCK	$0.23 - 13.5 \text{ mg/l NO}_3 - \text{N}$ $1 - 60 \text{ mg/l NO}_3$	2,6-dimetilfenol	•													C	LCK339
LCK	$1 - 60 \text{mg/1 NO}_3$ $5 - 35 \text{mg/1 NO}_3 - \text{N}$	2,6-dimetilfenol														С	LCK340
LCK	$22 - 155 \text{ mg/l NO}_3$	2,0-41111011101															LCK340
PP	$0.01 - 0.50 \text{ mg/l NO}_3 - \text{N}$	Reducción de cadmio	•													T, N	2429800
PP	$0.3 - 30.0 \text{ mg/l NO}_3 - \text{N}$	Reducción de cadmio														T, N	2106169
TNT	$0.2 - 30.0 \text{ mg/l NO}_3 - \text{N}$	Ácido cromotrópico												•	•	C	2605345

1) No evaluable en DR 2400

 $0,1 - 10,0 \text{ mg/l NO}_3 - \text{N}$

Téngase en cuenta: ¡Los rangos de medida pueden variar de un instrumento a otro!

Reducción de cadmio

2106169

^{→ *}Descripción símbolo de peligro, véase la página 60

WW DW PW

Test fotométricos (5)

																5	OK OK
TIPO	RANGO DE MEDIDA	ме́торо	8	000,40	145,000	145,30	14° 50	to, 700	CAD,	00 × 500	OP STATE	0000	04.50	06,30	04 40 CSS	00,000 00	REF.
NITRITO								•									
AV	0,002 – 0,300 mg/l NO ₂ -N	Diazotización														Xi	2512025
LCK	$0.6 - 6 \text{ mg/l NO}_2 - \text{N}$ $2 - 20 \text{ mg/l NO}_2$	Diazotización	•	•	•	•	•	•	•							Xi	LCK342
LCK	0,0015 – 0,03 mg/l NO ₂ -N 0,005 – 0,1 mg/l NO ₂	Diazotización	•	•	•		•	•	•								LCK541
LCK	0,015 – 0,6 mg/l NO ₂ -N 0,05 – 2 mg/l NO ₂	Diazotización	•	•	•	•	•	•	•							Xi	LCK341
PP	0,002 - 0,300 mg/I NO ₂ -N	Diazotización	•	•							•	•	•	•	•	Xi	2107169
PP	2 – 250 mg/l NO ₂ -N	Sufato de hierro (II)	•	•									•	•	•	Xi	2107569
TNT	0,003 - 0,500 mg/l NO ₂ -N	Diazotización									•	•	•	•	•	Xi	2608345
NITRÓGI	ENO (Kjeldahl total)																
PP	1 – 150 mg/l	Nessler	•	•									•	•	•	T+, N, C	2495300
NITRÓGI	ENO (total), LATON																
LCK	1 – 16 mg/l TN _b	Digestión Koroleff + 2,6-dimetilfenol	•	•	•	•	•	•	•							С	LCK138
_CK	5 – 40 mg/l TN _b	Digestión Koroleff + 2,6-dimetilfenol	•	•	•	•	•	•	•							С	LCK238
LCK	20 – 100 mg/l TN _b	Digestión Koroleff + 2,6-dimetilfenol	•	•	•	•	•	•	•							С	LCK338
NITRÓGI	ENO (total)																
TNT	0,5 – 25,0 mg/l N	Digestión persulfato + ácido cromotrópico											•	•	•	C, 0	2672245
TNT	10 – 150 mg/l N	Digestión persulfato + ácido cromotrópico											•	•	•	C, 0	2714100
NITRÓGI	ENO (total), inorgánico	·															
TNT	0,2 – 25,0 mg/l N	Reducción de tricloruro de titanio										•	•	•	•	C, Xn	2604545
NÍQUEL		ac aramo															
LCK	0,1 – 6 mg/l	Dimetilglioxima														С	LCK337
LCK	0,05 – 1 mg/l	Dimetilglioxima														C	LCK537
PP P	0,02 – 1,80 mg/l	Heptoxima												•	•	Xn	2243500
PP	0,007 – 1,000 mg/l	PAN	•	•											•	T	2242600
PP	0,007 – 1,000 mg/l	PAN	•	•						•			•	•		T	2651600
OXÍGEN	O (disuelto)																
AV	0,3 – 15,0 mg/l	HRDO	•	•							•	•		•	•	Xi	2515025
AV	6 – 800 μg/l	Carmín de índigo	•	•								•	•	•	•		2501025
ovícen	O (disuelto), RUA																
JAIGEN																	

LCK	→ cubeta-test LANGE	HPT	→ pipeta-test HACH	RS	→ solución de reactivo
LCW	V → pipeta-test LANGE	PP	→ ensayo con sobres de reactivo en polvo	IM	→ immunoensayo
TNT	→ TEST'N'TUBE	AV	→ ACCUVAC	RL	→ rapid liquid system

- Fotómetro y Espectrofotómetro, véase la página 29
- Analizador de Laboratorio, véase la página 83

DW

ww

PW

Cubeta-test (LCK)

Sobre de reactivo

ACCUVAC (AV) en polvo (PP) TIPO RANGO DE MEDIDA **MÉTODO** REF. **OZONO** AV 0,01 - 0,25 mg/l Índigo 2516025 AV $0.01 - 0.75 \,\text{mg/l}$ Índigo Xn 2517025 AV 0,01 - 1,50 mg/l Índigo Xn 2518025 PCB IM valores umbrales (ppm) Inmunoensayo para 2773500 suelo y agua PERÓXIDO DE HIDRÓGENO LCW 1 – 10 g/l LCW058 pН RS 6,5 - 8,5 unidades Rojo de fenol 2657512 **PLATA** LCK $0.04 - 0.8 \,\mathrm{mg/l}$ Método LANGE LCK354 LCK Método LANGE $5 - 2.500 \,\text{mg/l}$ C LCK355 2296600 PP 0,005 - 0,700 mg/l Colorimétrico Xi **PLOMO** RS $0 - 300 \,\mu g/l$ Ditizona • T+, C, N 2243100 5 – 150 μg/l Extracción por columna C 2375000 LCK 0,1 - 2 mg/l **PAR** T+, N LCK306 **POTASIO** LCK 8 – 50 mg/l Kalignost LCK328 0,1-7,0 mg/l Tetrafenilborato 2459100 T, F **REVELADOR DE COLOR CD 2/3/4** LCK 0,5 - 7,5 g/l Método LANGE LCK395 **SELENIO RS** 0,01 – 1,00 mg/l Diaminobencidina C, F, Xn 2244200 SÍLICE LCW $0.01 - 0.8 \,\text{mg/l SiO}_2$ Azul de molibdeno Xn, Xi LCW028 0,005 - 0,4 mg/l Si PP 0,01 - 1,60 mg/l SiO₂ Azul de heteropoli Xi, Xn 2459300 PP 1,0 - 100,0 mg/l Silicomolibdato Xi 2429600 Azul de heteropoli PP $3 - 1.000 \,\mu g/l \, SiO_2$ Xi 2553500 $3 - 1.000 \,\mu g/I \, SiO_2$ Azul de heteropoli Xi, Xn 2678500 LCW $0.8 - 100 \,\text{mg/l SiO}_2$ Azul de molibdeno Xn, Xi LCS028 0,4 - 50 mg/l Si

SÓLIDOS EN SUSPENSIÓN $0 - 750 \,\text{mg/l}$

Téngase en cuenta: ¡Los rangos de medida pueden variar de un instrumento a otro!

Fotométrico

¹⁾ No evaluable en DR 2400

^{→ *}Descripción símbolo de peligro, véase la página 60

Test fotométricos (6)

SULFAT AV LCK LCK PP PP	2 – 70 mg/l 40 – 150 mg/l 150 – 900 mg/l			000,40	14°00	14 C. 30	X X	to, 100	B	00 35 Oct.	12 80 V	880	888	. 0	00,000 CO 00,000 PELIGE	REF.
.CK .CK PP	40 – 150 mg/l															
CK PP PP	J.	Medida de turbidez	•	•							•		•	•	Xn	2509025
P P	150 - 900 mg/l	Sulfato de bario	•	•	•	•	•	•	•						T	LCK153
PP	-	Sulfato de bario	•	•	•	•	•	•	•						T	LCK353
	2 – 70 mg/l	Sulfato de bario	•	•										•	Xn	1206599
THE EIT	2 – 70 mg/l	Medida de turbidez	•	•							•		•		Xn	2106769
SULFIIC	0															
HPT	0,1 – 5,0 mg/l	Método HACH	•	•									•		С	HPT430
LCW	0,1 – 5 mg/l	Método LANGE	•	•	•		•	•	•							LCW054
SULFUR	RO															
LCK	0,1 – 2 mg/l	Dimetil-fenilenodiamina													С	LCK653
LCW	0,1 – 2 mg/l	Dimetil-fenilenodiamina	•	•	•	-	•	•	•						С	LCW053
RS	5 – 800 μg/l	Azul de metileno	•	•								•	•	•	T, C	2244500
LVNINU) LIGNINA															
RS	0,1 – 9,0 mg/l	Tirosina												•		2244600
	ACTIVOS (aniónicos)	Ministry adotal													ГТ	2446000
RS LCK	0,002 – 0,275 mg/l LAS 0,2 – 2 mg/l	Violeta cristal MBA	•	•							•		•	•	F, T Xn	2446800 LCK332
.CK	0,2 – 2 mg/l	CTAB													E V _n	I CV221
TENSO/	ACTIVOS (no iónicos)		•	•	•	•									F, Xn	LCK331
	ACTIVOS (no iónicos)	TBPK, CTAS	•	•	•	•	•	•	•						F, Xn	LCK331
LCK LCK	0,1 – 20 g/l 0,2 – 6,0 mg/l	TBPK, CTAS	•	•	•	•	•	•	•						Xn Xn	
LCK	0,1 - 20 g/l		•	•	•	•	•	•	•						Xn	LCK334
LCK LCK	0,1 – 20 g/l 0,2 – 6,0 mg/l	TBPK, CTAS	•	•	•	•	•	•	•						Xn Xn	LCK334 LCK333
LCK LCK	0,1 – 20 g/l 0,2 – 6,0 mg/l 6 – 200 mg/l	TBPK, CTAS	•	•	•	•	•	•	•						Xn Xn	LCK334 LCK333
.CK .CK .CK TOC (me	0,1 – 20 g/l 0,2 – 6,0 mg/l 6 – 200 mg/l étodo diferencia)	TBPK, CTAS TBPK, CTAS	•	•	•	•	•	•	•						Xn Xn Xn	LCK334 LCK333 LCK433
.CK .CK .CK TOC (me .CK	0,1 – 20 g/l 0,2 – 6,0 mg/l 6 – 200 mg/l étodo diferencia) 2 – 65 mg/l TOC	TBPK, CTAS TBPK, CTAS Persulfato (fotométrico)	•	•	•	•	•	•	•						Xn Xn Xn	LCK334 LCK333 LCK433
CK CK CCK TOC (mo	0,1 – 20 g/l 0,2 – 6,0 mg/l 6 – 200 mg/l étodo diferencia) 2 – 65 mg/l TOC 60 – 735 mg/l TOC	TBPK, CTAS TBPK, CTAS Persulfato (fotométrico)		•	•	•	•	•	0 0 0						Xn Xn Xn	LCK334 LCK333 LCK433
CCK CCK CCC CCC CCC CCC CCC CCC CCC	0,1 – 20 g/l 0,2 – 6,0 mg/l 6 – 200 mg/l étodo diferencia) 2 – 65 mg/l TOC 60 – 735 mg/l TOC étodo purgado) 3 – 30 mg/l TOC 30 – 300 mg/l TOC	TBPK, CTAS TBPK, CTAS Persulfato (fotométrico) Persulfato (fotométrico) Persulfato (fotométrico) Persulfato (fotométrico)	•	•	•	•	•	0 0 0	0						Xn Xn Xn Xn, 0 Xn, 0	LCK334 LCK333 LCK433 LCK380 LCK381
CCK	0,1 – 20 g/l 0,2 – 6,0 mg/l 6 – 200 mg/l étodo diferencia) 2 – 65 mg/l TOC 60 – 735 mg/l TOC étodo purgado) 3 – 30 mg/l TOC 30 – 300 mg/l TOC 300 – 3.000 mg/l TOC	TBPK, CTAS TBPK, CTAS Persulfato (fotométrico) Persulfato (fotométrico) Persulfato (fotométrico) Persulfato (fotométrico) Persulfato (fotométrico) Persulfato (fotométrico)		•	•	•	•	0 0 0	•						Xn Xn Xn Xn, 0 Xn, 0 Xn, 0	LCK334 LCK333 LCK433 LCK433 LCK380 LCK381 LCK385 LCK386 LCK387
CCK	0,1 – 20 g/l 0,2 – 6,0 mg/l 6 – 200 mg/l étodo diferencia) 2 – 65 mg/l TOC 60 – 735 mg/l TOC étodo purgado) 3 – 30 mg/l TOC 30 – 300 mg/l TOC 300 – 3.000 mg/l TOC 0,3 – 20,0 mg/l C	TBPK, CTAS TBPK, CTAS Persulfato (fotométrico)	•	•	•	•	•	•	•					•	Xn Xn Xn Xn, 0 Xn, 0 Xn, 0	LCK334 LCK333 LCK433 LCK380 LCK381 LCK385 LCK386 LCK387 2760345
CCK	0,1 – 20 g/l 0,2 – 6,0 mg/l 6 – 200 mg/l étodo diferencia) 2 – 65 mg/l TOC 60 – 735 mg/l TOC étodo purgado) 3 – 30 mg/l TOC 30 – 300 mg/l TOC 300 – 3.000 mg/l TOC 0,3 – 20,0 mg/l C 15 – 150 mg/l C	TBPK, CTAS TBPK, CTAS Persulfato (fotométrico)	•	•	•	•	•	•	•					•	Xn Xn Xn Xn, 0 Xn, 0 Xn, 0 Xn Xn, N Xn, N Xn, 0 Xn, 0	LCK334 LCK333 LCK433 LCK380 LCK381 LCK385 LCK386 LCK387 2760345 2815945
CCK	0,1 – 20 g/l 0,2 – 6,0 mg/l 6 – 200 mg/l étodo diferencia) 2 – 65 mg/l TOC 60 – 735 mg/l TOC étodo purgado) 3 – 30 mg/l TOC 30 – 300 mg/l TOC 300 – 3.000 mg/l TOC 0,3 – 20,0 mg/l C	TBPK, CTAS TBPK, CTAS Persulfato (fotométrico)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	•	•	•	•	•	•					•	Xn Xn Xn Xn, 0 Xn, 0 Xn, 0	LCK334 LCK333 LCK433 LCK380 LCK381 LCK385 LCK386 LCK387 2760345 2815945
CCK LCK LCK LCK LCK LCK LCK LCK LCK LCK	0,1 – 20 g/l 0,2 – 6,0 mg/l 6 – 200 mg/l étodo diferencia) 2 – 65 mg/l TOC 60 – 735 mg/l TOC étodo purgado) 3 – 30 mg/l TOC 30 – 300 mg/l TOC 300 – 3.000 mg/l TOC 0,3 – 20,0 mg/l C 15 – 150 mg/l C	TBPK, CTAS TBPK, CTAS Persulfato (fotométrico)		•	•	•	•	•	•					•	Xn Xn Xn Xn, 0 Xn, 0 Xn, 0 Xn Xn, N Xn, N Xn, 0 Xn, 0	LCK334 LCK333 LCK433 LCK380 LCK381 LCK385 LCK386 LCK387 2760345 2815945
CCK LCK LCK LCK LCK LCK LCK LCK LCK LCK	0,1 – 20 g/l 0,2 – 6,0 mg/l 6 – 200 mg/l étodo diferencia) 2 – 65 mg/l TOC 60 – 735 mg/l TOC étodo purgado) 3 – 30 mg/l TOC 30 – 3.000 mg/l TOC 0,3 – 20,0 mg/l C 15 – 150 mg/l C	TBPK, CTAS TBPK, CTAS Persulfato (fotométrico)	0 0 0	•	•	•	•	•	•					•	Xn Xn Xn Xn, 0 Xn, 0 Xn, 0 Xn Xn, N Xn, N Xn, 0 Xn, 0	LCK334 LCK333 LCK433 LCK380 LCK381
CCK	0,1 – 20 g/l 0,2 – 6,0 mg/l 6 – 200 mg/l 6 – 200 mg/l étodo diferencia) 2 – 65 mg/l TOC 60 – 735 mg/l TOC étodo purgado) 3 – 30 mg/l TOC 30 – 3.000 mg/l TOC 0,3 – 20,0 mg/l C 15 – 150 mg/l C 100 – 700 mg/l C RIAZOL 1 – 20 mg/l	TBPK, CTAS TBPK, CTAS Persulfato (fotométrico) Persulfato (fotométrico)	0 0 0	•	•	•	•	•	•					•	Xn Xn Xn, 0 Xn, 0 Xn, 0 Xn Xn, N Xn, N Xn, 0 Xn, 0	LCK334 LCK333 LCK433 LCK380 LCK381 LCK385 LCK386 LCK387 2760345 2815945 2760445

- Fotómetro y Espectrofotómetro, véase la página 29
- Analizador de Laboratorio, véase la página 83

Cubeta-test (LCK)

Sobre de reactivo en polvo (PP)

Zincón

PAR

ACCUVAC (AV)

EF.

PW

WW

2429300

LCS360

TIPO	RANGO DE MEDIDA	MÉTODO	REI
TPH en	agua		

TPH en	agua															
IM	Valor límite 2 – 200 mg/l	Inmunoensayo para suelo y agua	•	•	•	•	•	•	•	•		•	•	•		2774300
TRIHAL	OMETANO															
RS	0 – 200 ppb	THM Plus	•	•										•		2790800
UNIDA	DES "BITTER"															
LCK	≥ 2 BU	MEBAK		•					•						F, Xn, N	LCK241
YODO																
AV	0,07 – 7,00 mg/l	DPD	•	•									•	•		2503025
PP	0,07 – 7,00 mg/l	DPD	•	•									•	•		2105669
ZINC																
LCK	0.2 - 6 mg/l	PAR													Xn	LCK360

0,01 - 2,00 mg/l

ZINC (traza)

LCK 0,02 – 0,8 mg/l

www.hach-lange.es

Realice sus pedidos de una forma sencilla y rápida

1) No evaluable en DR 2400

Téngase en cuenta: ¡Los rangos de medida pueden variar de un instrumento a otro!

- → *Descripción símbolo de peligro, véase la página 60
- → Para más información acerca de la formulación de pedidos por Internet, véase la página 146
- → Realice sus pedidos de una forma sencilla y rápida

Soluciones standard – Aseguramiento de la Calidad Analítica

Analizar es algo más que medir. Los resultados sólo son seguros si se hacen conjuntamente con aseguramiento de la calidad analítica (ACA). HACH LANGE ofrece las clásicas soluciones standard individuales así como unas prácticas soluciones multistandard en combinaciones orientadas al análisis. El extenso sistema ACA para las cubetas-test de LANGE contiene, además, dos soluciones ciegas que permiten al usuario participar en ensayos interlaboratorio específicos de LANGE gratuitamente.

ADDISTA contiene una solución standard para aseguramiento de calidad intralaboratorio y dos soluciones "ciegas" para ensayos interlaboratorio ("Ring Test"). Para varios parámetros de forma simultánea, cada ADDISTA facilita el aseguramiento coherente de la calidad del sistema analítico completo de cubetas-test de LANGE:

- Control interno de método y equipo
- Detección de interferencias relacionadas con las muestras
- Confirmación externa mediante un ensayo interlaboratorio ("Ring Test") gratuito, conforme a la norma aplicable.

Soluciones multistandard ADDISTA para el aseguramiento de la calidad analítica en LANGE

PARA CUBETA-TEST		CONCENTRACIÓN	REF.	PARA CUBETA-TEST		CONCENTRACIÓN	REF.
Amonio	LCK304	0,015 - 2 mg/l NH ₄ -N	LCA700	Amonio	LCK305	1 – 12 mg/l NH ₄ -N	LCA704
Cloruro	LCK311	1 – 70 mg/l		Cloruro	LCK311	1 – 70 mg/l	
DQO	LCK414	5 – 60 mg/l		DQO	LCK314	15 – 150 mg/l	
Nitrógeno (total)	LCK238	$5-40 \mathrm{mg/l} \mathrm{TN_b}$		DQO ISO	LCI500	0 – 150 mg/l	
Fósforo (orto)	LCK348	$0.5 - 5 \mathrm{mg/l} PO_4 - P$		Nitrato	LCK340	$5 - 35 \mathrm{mg/l} \mathrm{NO_3} - \mathrm{N}$	
Potasio	LCK328	8 – 50 mg/l		Fósforo (orto)	LCK349	$0.05 - 1.5 \mathrm{mg/l} \mathrm{PO_4} - \mathrm{P}$	
Cobre	LCK329	0,1 – 8 mg/l	LCA701	Sulfato	LCK153	40 – 150 mg/l	
Hierro	LCK321	0,2 - 6 mg/l		TOC	LCK385	3 – 30 mg/l	
Níquel	LCK337	0,1 - 6 mg/l		Amonio	LCK302	47 – 130 mg/l NH ₄ -N	LCA705
Plomo	LCK306	0,1 - 2 mg/l		Cloruro	LCK311	1 – 70 mg/l	
Sulfato	LCK353	150 – 900 mg/l		DQO	LCK014	1.000 – 10.000 mg/l	
Zinc	LCK360	0,2 - 6 mg/l		TOC	LCK387	300 – 3.000 mg/l	
Aluminio	LCK301	0,02 - 0,5 mg/l	LCA702	Cobre	LCK529	0,01 – 1 mg/l	LCA706
Cadmio	LCK308	02 – 03 mg/l		Hierro	LCK521	0,01 – 1 mg/l	
Cromo (VI)	LCK313	0,03 – 1 mg/l		Manganeso	LCW032	0,02 - 5 mg/l	
Cromo (total)	LCK313	0,03 – 1 mg/l		Níquel	LCK537	0,05 – 1 mg/l	
Sulfato	LCK353	150 – 900 mg/l		DQO	LCK614	50 – 300 mg/l	LCA707
Amonio	LCK303	2 – 47 mg/l NH ₄ -N	LCA703	Nitrito	LCK341	$0.015 - 0.6 \mathrm{mg/l}\mathrm{NO_2} - \mathrm{N}$	
Cloruro	LCK311	1 – 70 mg/l		Fósforo (total)	LCK348	$0.5 - 5 \mathrm{mg/l} \mathrm{PO_4} - \mathrm{P}$	
DQO	LCK114	150 – 1.000 mg/l		DQO	LCK514	100 – 2.000 mg/l	LCA708
DQO ISO	LC1400	0 – 1.000 mg/l		Nitrógeno (total)	LCK338	20 – 100 mg/l TN _b	
Nitrato	LCK339	$0,23 - 13,5 \mathrm{mg/l}\mathrm{NO_3} - \mathrm{N}$		Fósforo (total)	LCK350	2 – 20 mg/l PO ₄ -P	
Fósforo (orto)	LCK049	1,6 - 30 mg/l PO ₄ -P		DQO	LCK614	50 – 300 mg/l	LCA709
Fósforo (orto)	LCK350	2 – 20 mg/l PO ₄ -P		Nitrógeno (total)	LCK138	1 – 16 mg/l TN _b	
Sulfato	LCK353	150 – 900 mg/l		Nitrito	LCK342	$0.6 - 6 \mathrm{mg/l}\mathrm{NO_2} - \mathrm{N}$	
TOC	LCK386	30 – 300 mg/l		Fósforo (total)	LCK349	0,05 - 1,5 mg/I PO ₄ -P	

Todas las ADDISTA contienen solución standard de 85 ml así como 2 soluciones ciegas interlaboratorio de 25 ml cada una

- → Más información acerca de las cubetas-test de LANGE y ADDISTA: véase la página 44
- → Todas las cubetas-test de LANGE: véase la página 54
- → Para más información acerca de la formulación de pedidos por Internet, véase la página 146

Soluciones standard individuales de LANGE

PARA CUBETA-TEST		DETERMINACIÓN	REF.
AOX	LCK390	6	LCA390
DBO ₅	LCK555	10	LCA555
Cloro	LCK310	20	LCA310

WW

PW

Soluciones multistandard de HACH

APLICACIÓN	PARÁMETRO	CONCENTRACIÓN	REF.
Agua residual;	Amonio	15 mg/l NH ₄ -N	2833149
entrada planta	Nitrato	$10 \text{ mg/l NO}_3-\text{N}$	
	Fosfato	10 mg/l PO ₄	
		3,3 mg/l PO ₄ -P	
	DQO	500 mg/l DQ0	
	Sulfato	400 mg/I SO ₄	
	TOC	161 mg/l TOC	
Agua residual;	Amonio	2 mg/l NH ₄ -N	2833249
salida planta	Nitrato	$4 \text{ mg/l NO}_3 - \text{N}$	
	Fosfato	2 mg/l PO ₄	
		0,65 mg/l PO ₄ -P	
	DQO	25 mg/l DQ0	
	Sulfato	50 mg/I SO ₄	
	TOC	8 mg/I TOC	
Dureza del agua;	Dureza total	1.000 mg/l CaCO ₃	2833349
rango de medida alto		56,2 °dH	
	Dureza	500 mg/l CaCO ₃	
	de calcio	28,1°dH	

APLICACIÓN	PARÁMETRO	CONCENTRACIÓN	REF.
Dureza del agua;	Dureza total	100 mg/l CaCO ₃	2833449
rango de medida bajo		5,6 °dH	
	Dureza	50 mg/I CaCO ₃	
	de calcio	2,8 °dH	
Metales pesados	Cobre	1 mg/l Cu	2833749
en el agua potable;	Hierro	0,3 mg/l Fe	
rango de medida bajo	Manganeso	0,1 mg/l Mn	
Metales pesados	Cobre	2,5 mg/l Cu	2833649
en el agua potable;	Hierro	1,5 mg/l Fe	
rango de medida alto	Manganeso	5 mg/l Mn	
Sustancias	Fluoruro	1 mg/l F	2833049
inorgánicas en	Nitrato	$2 \text{ mg/l NO}_3-\text{N}$	
el agua potable		8,9 mg/l NO ₃	
	Fosfato	2 mg/l PO ₄	
	Sulfato	50 mg/l SO ₄	

Todas las soluciones multistandard de HACH vienen en botellas de 500 ml

Soluciones standard individuales de HACH

PARÁMETRO	CONC.	VOLUMEN	REF.
Aluminio como Al*	100 mg/l	100 ml	1417442
Amonio como NH ₃ -N	1 mg/l	500 ml	189149
	10 mg/l	500 ml	15349
Arsénico** como As	1.000 mg/l	100 ml	1457142
Bario como Ba*	1.000 mg/l	100 ml	1461142
Cadmio como Cd*	100 mg/l	100 ml	1402442
Calcio como Ca*	10 mg/l	100 ml	2305442
para dureza			
Calcio como CaCO ₃ *	1.000 mg/l	11	12153
(CaCl ₂) para dureza			
Cloruro como Cl-	1.000 mg/l	500 ml	18349
Cloro como Cl ₂ *	25 – 30 mg/l	2 ml/20 a*	2630020
	50 – 75 mg/l	10 ml/16 a*	1426810
Cobalto como Co*	1.000 mg/l	100 ml	2150342
Cobre como Cu*	100 mg/l	100 ml	12842
Cromo (VI) como Cr6+*	12,5 mg/l	10 ml/16 a*	1425610
Cromo (III) como Cr3+*	50 mg/l	100 ml	1415142
DBO*	300 mg/l glucosa/	10 ml/16 a*	1486510
	ácido glutámico 3.000 mg/l glucosa/ ácido glutámico	10 ml/16 a*	1486610

PARÁMETRO	CONC.	VOLUMEN	REF.
DQ0*	300 mg/l	200 ml	1218629
	300 mg/l	500 ml	1218649
	1.000 mg/l	200 ml	2253929
Dureza como CaCO ₃ *	10.000 mg/l	10 ml/16 a*	218710
Fluoruro como F-*	1,0 mg/l	11	29153
Fosfato como PO ₄ ^{3-*}	1 mg/l	500 ml	256949
Fósforo como P*	25 mg/l	10 ml/16 a*	2109210
Hierro como Fe*	100 mg/l	100 ml	1417542
Manganeso como Mn*	1.000 mg/l	100 ml	1279142
Mercurio*** como Hg*	1.000 mg/l	100 ml	1419542
Molibdeno como Mo*	500 mg/l	10 ml/16 a*	1426510
Níquel como Ni*	1.000 mg/l	100 ml	1417642
Nitrato como NO ₃ -N*	10 mg/l	500 ml	30749
Plata como Ag*	1.000 mg/l	100 ml	1461342
Plomo como Pb*	50 mg/l	10 ml/16 a*	1426210
Potasio como K*	100 mg/l	1.000 ml	2240442
Sílice como SiO ₂ *	1 mg/l	500 ml	110649
Solución de nitrito,	250 μgl	500 ml	2340249
madre, como N, APHA			
Sulfato como SO ₄ ^{2-*}	50 mg/l	500 ml	257849
	1.000 mg/l	500 ml	2175749
Sulfito como SO ₃ ²⁻	5.000 mg/l	10 ml/16 a*	2267410
Zinc como Zn*	100 mg/l	100 ml	237842

^{*)} NIST a*) ampoll. **) Sustancia peligrosa T; 2 ***) Sustancia peligrosa Xn; 3

Previa solicitud, disponemos de otras concentraciones de soluciones standard individuales de HACH

- → Más información acerca de los tests de HACH: véase la página 41
- → Todos los tests de HACH: véase la página 46, 54
- → Para más información acerca de la formulación de pedidos por Internet, véase la página 146

DBO TRAK – Fácil determinación manométrica de **DBO**

- → Sencillo manejo sin costosas series de dilución
- → Método manométrico sin carga de mercurio
- → Necesita poco espacio
- → Programa de medida versátil para 5, 7, 10 ó 30 días

La estación de medida DBO TRAK es agitador, medidor y unidad de evaluación: ¡Todo en uno!

DBO TRAK – la estación de medida completa

Simplemente introducir una cantidad conocida de muestra y una cantidad conocida de nutriente en las botellas, conectar los sensores de presión y dejar el resto al DBO TRAK. El avance del test durante 5, 7, 10 ó 30 días puede comprobarse en cualquier momento, ya que se puede llamar a las curvas y datos de medida durante la incubación.

Medir la DBO manométricamente a partir del consumo

El principio de medida es tan simple como elegante. Cuando las bacterias desintegran las sustancias que contiene la muestra, consumen O_2 y producen CO_2 . El consumo de O_2 hace que la presión en las botellas caiga, dado que la cantidad de CO_2 equivalente generada se elimina por absorción en LiOH. DBO TRAK calcula el valor de DBO (en mg/l) a partir de la presión medida.

Valor de DBO con un coste mínimo

La medición clásica de la DBO lleva mucho tiempo – requiere la preparación de series de dilución, determinar el oxígeno, etc. – y por lo tanto, es cara. Nada de esto hace falta cuando la DBO se determina por el método manométrico, permitiendo que hasta el personal no especializado pueda llevarlo a cabo sin problema.

DBO TRAK, Ref. 2619700

Tipo	Estación de medida de DBOn, manométrica, de
	laboratorio, unidad de control y agitador con
	sensores de presión para 6 botellas
Métodos	Programas de medida de DBO para 5, 7, 10 días,
	test de biodegradación OECD para 30 días
Rango de medida	0-700 mg/l, variable
Pantalla	Para la representación gráfica de la curva de medida
	de DBO
Memoria datos	Para los valores medidos
Equipo	6 tapones herméticos, 6 botellas de 473 ml.,
	6 imanes, LiOH, Nutriente
Interfaz	232C para la documentación sobre impresora o PC
Alimentación	110/230 V, 50/60 Hz
Dimensiones, peso	30,5 x 30,5 x 12,7 cm; 7,85 kg

Accesorios para DBO TRAK

REF.	DESCRIPCIÓN
714421	6 botellas de vidrio de color ambar de 473 ml cada una
1097752	Tapón de cierre hermético de goma
1076416	Imán (barra agitadora magnética)
2616202	Incubador para DBO, 20 °C, dimensiones interiores
	42 x 44,5 x 61 cm

→ Cubeta-test de DBO: véase la página 54 y siguientes

Mayor seguridad con la detección de microorganismos

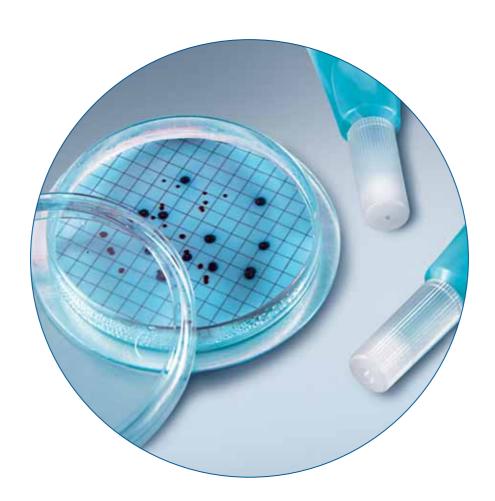
ww

DW

Los microorganismos constituyen un factor de riesgo en muchos ámbitos de la vida. Son perjudiciales para la salud e interrumpen los procesos industriales, lo que se traduce en pérdidas económicas considerables. La detección rápida y fiable de los microorganismos es un requisito para el control del proceso, la reducción eficaz de los costes, y para el cumplimiento de valores umbrales legales.

PW

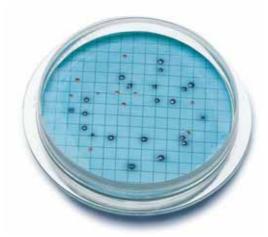
Métodos contrastados proporcionan resultados fiables


Los métodos microbiológicos de HACH están basados en procedimientos aceptados a nivel mundial. Su eficacia se ha demostrado durante muchos años. Muchos productos son conformes a métodos normalizados oficiales o han sido aprobados para medidas de control legales.

Bien diseñados y completos en cada detalle

Desde el muestreo hasta la evaluación de los resultados, los métodos HACH están bien diseñados. Cuando es posible, el soporte del reactivo sirve también de recipiente para el ensayo ahorrando, así, tiempo, espacio y costes. Los reactivos son líquidos y por tanto se pueden agregar y mezclar fácilmente.

Larga durabilidad e inmediatamente listos para usar


Todos los reactivos y test individuales están listos para usar. Una larga vida útil confiere una gran flexibilidad.
Todos los procedimientos, sean la filtración por membrana, P/A, NMP o el método de placa de siembra en superficie, pueden realizarse fácil, rápidamente y con seguridad.

Excluir los microorganismos – Para aguas potables y de recreo

- → Test y medios de cultivo
- → Coliformes y E. coli
- → Recuento bacterias totales
- → Pseudomonas aeruginosa

Filtración por membrana lista para usar con M-COLI BLUE24: ¡detección fiable de *E. coli* y coliformes en sólo 24 horas!

Resumen de los test y medios de cultivo

FILTRACIÓN POR MEMBRANA					
M COLI BLUE24	Detección de coliformes (rojo) y E. coli (azul)				
	en filtro en 24 h; aprobado EPA				
m-Endo	Detección clásica de coliformes				
m-FC	Detección clásica de coliformes fecales				
m-TGE con TTC	Determinación recuento de bacterias totales				
	(bacterias heterotróficas)				
m-HPC	Determinación recuento de bacterias totales				
	(bacterias heterotróficas)				
Caldo Pseudomonas	Detección de Pseudomonas spec.				
P/A (PRESENCIA/AUSE	NCIA)				
Caldo	Presencia o ausencia de coliformes				
Caldo con MUG	Presencia o ausencia de coliformes y E. coli				
NMP (NÚMERO MÁS P	PROBABLE)				
Triptosa de laurilo	Detección de coliformes				
- Con MUG	Detección de coliformes y E. coli				
Bilis verde brillante	Test de confirmación para coliformes				
Caldo lactosa	Detección de coliformes				
Medio EC	Test confirmación coliformes fecales				
- Con MUG	Test de confirmación para E. coli				

Filtración por membrana simplificada; fiable y rápida

¿E. coli o coliformes? Con M-COLI BLUE24, HACH ha mejorado considerablemente la filtración por membrana:

- Fácil manejo con medio selectivo predividido y placa petri completa con filtro
- Resultados rápidos en tan sólo
 24 horas. Usted sabe a qué atenerse
- ¡Con seguridad!

P/A, la alternativa sencilla

¿Contaminación fecal o no? La detección es muy sencilla: sólo hay que añadir 100 ml de agua al reactivo líquido del recipiente estéril. Transcurrido el periodo de incubación, un cambio de color de rojo a amarillo indica la presencia de incluso un sólo coliforme; la fluorescencia indica la presencia de *E. coli*.

NMP para aguas de recreo y como ensayo de confirmación

Detalles prácticos caracterizan los ensayos NMP de HACH:

- Medios normalizados
- Con tubos Durham, si fuera necesario
- Predivididos para uso inmediato
- Uso flexible: individualmente como confirmación, o con 15 tubos para un test NMP 3 x 5

Se trate de superficies o de aguas: Control fiable de bacterias y hongos

- → Formación de limo
- → Corrosión
- → Olor
- → Cambios de color

Medidores "paddle" para controles fiables

Las medidas de limpieza y desinfección cuestan dinero y deben ser controladas. Los medidores "paddle" listos para usar detectan bacterias, levaduras y mohos en superficies o líquidos. Sólo hay que sumergir la paleta o presionarla sobre la superficie, incubar y contar.

Los medidores BART van al fondo de la cuestión

Filtros obstruidos, tuberías corroídas, olores - la culpa la tienen, generalmente, las bacterias. Pero, ¿qué bacterias? Los medidores BART identifican las principales responsables. Sólo hay que agregar la muestra al reactivo en el recipiente, incubar y evaluar la reacción.

Reducir costes con la decisión correcta en el momento oportuno

Los medidores "paddle" y BART indican la presencia de bacterias, cuántas hay presentes o su actividad. Esto significa que pueden generarse valores límite individuales y controlarlos de manera específica, con lo que se hacen más seguros los procesos y se ahorran costes.

Introducir la paleta o presionarla sobre la superficie, incubar, contar - ¡ya está!

Descripción de los test

DESCRIPCIÓN	CANTIDAD	REF.
MEDIDORES DE PALETA		
Bacterias totales, levadura y moho	10/paq.	2610810
Bacterias totales y coliformes	10/paq.	2610910
Bacterias totales y control de desinfección	10/paq.	2619510
MEDIDORES TIPO BART		
Bacterias relacionadas con el hierro	9/paq.	2432309
	27/paq.	2432327
Bacterias reductoras del sulfato	9/paq.	2432409
	27/paq.	2432427
Bacterias formadoras de limo	9/paq.	2432509
	27/paq.	2432527
Paquete combinado:	3/paq.	2434809
Bacterias reductoras del sulfato/formadoras	cada tipo	
de limo/relacionadas con el hierro		
Bacterias desnitrificadoras	9/paq.	2619309
Bacterias nitrificadoras	7/paq.	2619407
Pseudomonas fluorescentes	9/paq.	2432609
	27/paq.	2432627
Bacterias aeróbicas heterotróficas	9/paq.	2490409
(recuento bacterias totales)	27/paq.	2490427
Bacterias productoras de ácidos	9/paq.	2831409
Microalgas	9/paq.	2432709
	27/paq.	2432727

Test de fotobacterias LUMISTOX: Detección de toxicidad en sólo minutos

- → Conforme a la norma internacional EN ISO 11348
- → Con bacterias conservadas de gran duración
- → Funcionamiento sencillo
- → Rápida: tiempo de ensayo máx. 30 minutos
- → Con compensación de color

Seguro y fiable

¿La toxicidad de las muestras no debe rebasar unos valores límite definidos? ¿Se deben someter a pruebas de riesgo las muestras de productos químicos o de aguas residuales de proceso? Los ensayos interlaboratorio confirman de forma coherente que el test de fotobacterias es el biotest más fiable y más seguro.

Sencillo y rápido

Realizar un test de bacterias bioluminiscentes es muy sencillo. Estas bacterias conservadas se reactivan antes de empezar el ensayo. Su idoneidad es indicada por su luminiscencia natural; cuanto mayor es la intensidad con la que la muestra inhibe esta luminiscencia, más ecotóxica es. El resultado se obtiene en 30 minutos como máximo.

Desde el análisis de servicio hasta la vigilancia oficial

El sistema de medida LUMISTOX está disponible en configuraciones apropiadas para diversas necesidades:

- Para test de fotobacterias normalizados y demás tareas exigentes relativas a la ecotoxicidad
- Para análisis de servicio con buena relación coste-eficacia, también in situ

LUMISTOX y accesorios

DESCRIPCIÓN	REF.
LUMISTOX 300	LPV321
Luminómetro conforme a EN ISO 11348	
LUMISTHERM	LTV053
Termostato 15 °C conforme a EN ISO 11348	
LUMISSOFT 4	LZV093
Programa de PC para evaluación de muestras	

Más información en www.hach-lange.es, ref. de búsqueda "LUMISTOX", con descarga gratuita de folleto (DOC032.52.00060) y Manual de instrucciones (BDA318)

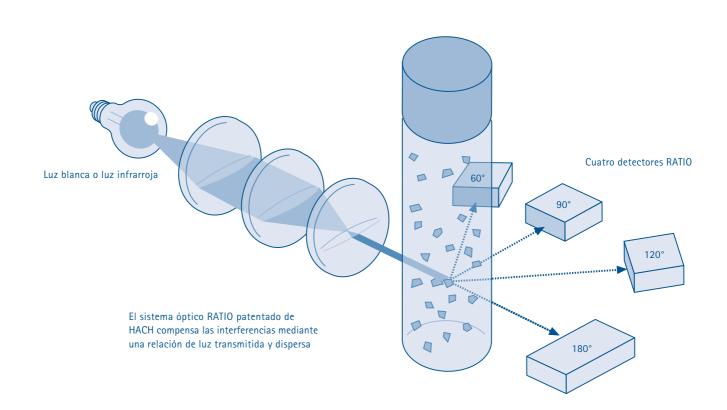
DESCRIPCIÓN		REF.
Bacterias bioluminiscentes	Para 200 tests	LCK480
desecadas, de acuerdo	Para 400 tests	LCK482
con EN ISO 11348 Parte 2	Para 90 tests	LCK487
Bacterias bioluminiscentes	Para 200 tests	LCK490
liofilizadas, de acuerdo	Para 400 tests	LCK492
con EN ISO 11348 Parte 3	Para 1.200 tests	LCK491
Cubetas de vidrio LUMIS, pack/638,		LZP187
para el test de fotobacterias		
Solución NaCl, 250 ml,		LCK 481
para el test de fotobacterias		

Medida de turbidez conforme a ISO y EPA – En el laboratorio y en campo

La turbidez es un parámetro significativo firmemente establecido en el análisis de aguas, en el aseguramiento de la calidad y en el control de proceso.

La serie de turbidímetros 2100 de HACH conjuga diseño práctico y tecnología de medida conforme a la norma ISO o EPA. Todos los instrumentos están disponibles con la opción de fuente de luz infrarroja o luz blanca de acuerdo con la norma.

Precisión y fiabilidad


- En la detección de turbideces muy pequeñas, p. ej. en agua potable
- En el tratamiento de aguas residuales y aguas de proceso
- En el control de aguas de proceso para detectar la presencia de un producto
- En el aseguramiento de la calidad

Con STABL CAL, la calibración conforme a la norma se simplifica

Fácil calibración con STABL CAL. Los turbidímetros se prueban y calibran con suspensiones de formazina.
Con su gama STABL CAL, HACH es el único proveedor mundial de patrones primarios de formazina estables, de aplicación directa, en diferentes concentraciones – completo, con certificado de análisis.

El sistema óptico RATIO compensa las interferencias

El sistema RATIO, en todos los turbidímetros 2100, detecta y compensa factores interferentes como el color intrínseco de la muestra o las fluctuaciones de la lámpara. El valor medido se determina a partir de varias señales, resultando una precisión y sensibilidad excelentes en todo el rango de medida ¡también con niveles de turbidez ultra-altos!

Medida de turbidez en el laboratorio – Todo partiendo de un único proveedor

→ Con luz infrarroja o luz blanca conforme a ISO y EPA

→ Amplio rango de medida gracias al sistema óptico RATIO: 0,001-10.000 NTU

- → Fácil calibración
- → Manejo intuitivo
- → Para opalescencia de acuerdo con Farmacopea Europea 5.0
- → Para las turbideces más pequeñas en el agua potable

2100N/2100N IS – la serie N para aplicaciones estándar

- Sistema óptico RATIO de 3 detectores para compensación de interferencias
- Conmutación automática del rango de medida

2100AN/2100AN IS – la serie AN para trabajos profesionales

- Sistema óptico RATIO de 4 detectores para compensación de interferencias
- Amplio rango de medida, hasta 10.000 NTU

El análisis de turbidez competente va más allá del turbidímetro

- Contrato de mantenimiento completo con garantía ampliada para el control de equipos de ensayo
- Cualificación de equipos (EQ)

Especificaciones técnicas de los turbidímetros de laboratorio 2100N/AN

MODELO	2100N	2100N IS	2100AN	2100AN IS			
Ref.	4700002	4790002	4700102	4790102			
Fuente de luz	Luz blanca	Infrarroja (860 nm)	Luz blanca	Infrarroja (860 nm)			
Normativa	USEPA 180.1	EN ISO 7027	USEPA 180.1	EN ISO 7027			
Modo RATIO	90°/120°/180°	90°	90°/60°/120°/180°	90°/60°/120°/180°			
Rango de medida	0,001-4.000 NTU	0,001-1.000 FNU	0,001-10.000 NTU	0,001-1.000 FNU			
	0,01-980 EBC		0,01-2.450 EBC	0,001-10.000 NTU			
Resolución	0,001	en el rango 0,001-0,999 FNU/	NTU; 0,01 en el rango 1,00-9,	99 FNU/NTU			
	0,1 en	0,1 en el rango 10,0-99,9 FNU/NTU; 1 en el rango 100-1.000 FNU o 10.000 NTU					
Precisión	$\pm2\%$ en el rango 0–1.000 NTU; $\pm5\%$ en el rango 1.000–4.000 NTU; $\pm10\%$ en el rango 4.000–10.000 NTU						
Reproducibilidad	± 1 % ó 0,01 FNU/NTU						
Promedio de valores		Puede activa	rse o desactivarse				
Calibración	Hasta 5 puntos	Hasta 5 puntos	Hasta 6 puntos,	Hasta 6 puntos,			
			Método de usuario	Método de usuario			
			con hasta 8 puntos	con factor			
Tiempo de respuesta		< 7 seg, 14 seg co	on promedio de valores				
Volumen de muestra		20 ml c	como mínimo				
Hora/Fecha		Reloj de tiempo real interno					
Interfaz		R	RS232C				
Impresora interna	No	No	Sí	Sí			
Dimensiones/Alimentación	40,0 x 30,5 x 14,2 cm (Longitud x Anchura x Altura); 150/230 V AC/50/60 Hz						

[→] Para patrones de turbidez y accesorios, véase la página siguiente

En el trabajo diario: Turbidimetría precisa in situ

- → Tecnología conforme a normas ISO y EPA
- → Precisión debida al sistema óptico RATIO
- → Fácil de manejar
- → Fiable y robusto
- → Totalmente equipado para funcionamiento in situ

Conforme a la norma – con luz blanca o infrarroja

Para poder comparar los valores de turbidez con fiabilidad es necesaria la trazabilidad según normas internacionales.

El 2100P ISO se diseñó de acuerdo con EN ISO 7027 (LED IR 860 nm). El modelo 2100P se ajusta totalmente a las directrices de US EPA180.1.

Aplicaciones y muestras difíciles – ningún problema

El sistema óptico RATIO garantiza unos resultados de medida de precisión en todo el rango de medida – incluso cuando las muestras son turbias o ultraclaras.

El sistema óptico está protegido por carcasa de ABS de gran resistencia al impacto, que protege los instrumentos, hasta en los ambientes más agresivos.

Totalmente equipados para funcionamiento in situ

Los turbidímetros portátiles 2100P y 2100P ISO cuentan con una tecnología excelente y están calibrados en fábrica, se suministran con pilas y además, el práctico maletín de transporte contiene todo lo necesario para el transporte, la calibración y la medida in situ.

Turbidímetros portátiles 2100P

Tan Brannott Go port						
MODELO	2100P	2100P ISO				
Ref.	4650000 4474002					
Rango de medida	0,01-1.000 NTU 0,01-1.000 FNU					
Normativa	USEPA 180.1	EN ISO 7027				
Fuente de luz	Luz blanca	Infrarroja (860 nm)				
Modo de medición RATIO	90/180°	90/180°				
Resolución	0,01 en el rango de 0,01-9,99					
	0,1 en el rango de 10,0-99,9					
	1 en el rango de 100-1.000					
Precisión	± 2% de la lectura más luz difusa					
Luz difusa	< 0,02 FNU/NTU					
Repetibilidad	± 1% o 0,01 FNU/NTU					
Promedio de valores	Puede activarse y desactivarse					
Calibración	Calibración en 4 puntos, automática					
Tiempo de respuesta	6 seg.					
Pantalla	Pantalla de cristal líquido (LCD)					
Volumen de muestra	15 ml por lo menos					
Dimensiones	22,2 x 9,5 x 7,9 cm (Long. x Anch. x Alt.)					
Peso	0,45 kg (2,7 kg en maletín con accesorios)					
Condiciones trabajo	0 a 50 °C					

Más información en www.hach-lange.es, ref. de búsqueda "Turbidez 2100", con descarga gratuita de folleto de 2100P ISO (DOC062.52.00620) y Manuales de instrucciones de 2100P (DOC022.61.00641) y 2100P ISO (DOC022.61.00630)

WW

PW

Patrones y accesorios STABL CAL para la medida de turbidez

- → Soluciones patrón de estabilidad duradera en botellas o en viales sellados
- → Listas para uso inmediato; no requieren dilución
- → Ya no es necesario preparar una solución madre de formazina
- → Para opalescencia de acuerdo con la Farmacopea Europea 5.0

Dos métodos sencillos: introducir los viales reutilizables en el instrumento o bien utilizar soluciones patrón en botella.

Patrones y accesorios STABL CAL para medir turbidez y opalescencia

PATRONES STABL CAL	REF.
Patrón primario de formazina estable, listo para usar; estable durante 2 años a partir de la fecha de preparación	
Kits de calibración para 2100AN/2100AN IS	
Set de viales STABL CAL: < 0,1; 20; 200; 1.000; 4.000; 7.500 NTU	2659505
Set de botellas de 100 ml STABL CAL: < 0,1; 20; 200; 1.000; 4.000; 7.500 NTU	2659510
Set de botellas de 500 ml STABL CAL: < 0,1; 20; 200; 1.000; 4.000; 7.500 NTU	2659500
Kits de calibración para 2100N/2100N IS	
Set de viales STABL CAL: < 0,1; 20; 200; 1.000; 4.000 NTU	2662105
Set de botellas de 100 ml STABL CAL: < 0,1; 20; 200; 1.000; 4.000 NTU	2662110
Set de botellas de 500 ml STABL CAL: < 0,1; 20; 200; 1.000; 4.000 NTU	2662100
Kits de calibración para 2100P/2100P ISO	
Set de viales STABL CAL: < 0,1; 20; 100; 800 NTU	2659405
Set de botellas de 100 ml STABL CAL: < 0,1; 20; 100; 800 NTU	2659410
Set de botellas de 500 ml STABL CAL: < 0,1; 20; 100; 800 NTU	2659400
Kit de patrones STABL CAL para analizar turbideces finas, incluye 4 botellas de 100 ml: 0,10; 0,30; 0,50;	2714600
1,00 NTU, aceite de silicona, paño para limpieza de cubetas, instrucciones de uso; estable durante 6 meses por lo menos	
Set de suspensiones de referencia I, II, III, IV según Farmacopea Europea 5.0, 2100AN/AN IS con certificado	
Set de viales STABL CAL: < 0,1; 3; 6; 18; 30 NTU	2897100
Set de botellas de 100 ml STABL CAL: < 0,1; 3; 6; 18; 30 NTU	2897200
Suspensión madre para la medida de opalescencia de acuerdo con Farmacopea Europea 5.0, 100 ml,	2896642
2100AN/AN IS	
Botella de 100 ml STABL CAL: 4.000 NTU	246142
Botella de 500 ml STABL CAL: 4.000 NTU	246149
ACCESORIOS	
Cubetas circulares de 13 mm, pack/494	LYY621
Tapón para cubeta circular LYY621, pack/1	EYG044
Cubetas de repuesto con tapón roscado, pack/6, para 2100AN/2100AN IS	2084900
(también para métodos visuales conforme a Farmacopea Europea 5.0)	
Cubetas de repuesto con tapón roscado, pack/6, para 2100P/2100P ISO	2434706
Kit de cubeta de flujo, manual, baja presión	4744900
Kit de cubeta de flujo, automática, 230V	4745002
Kit de cubeta de flujo, manual, alta presión	4745100
Adaptador para cubetas circulares de 12 a 13 mm	3033400
Adaptador para cubetas circulares de 16 mm	3033500
Adaptador para cubetas circulares de 19 mm	3033600
Aceite de silicona, botella de 15 ml	126936
Kit de cubeta de flujo, automática, 230V	4745002
Paño para limpieza de cubetas	2687300
Kit de desgasificación de muestras	4397500
Papel para impresora, para 2100AN, pack/5 rollos	4709000
Unidad de alimentación para 2100P/P ISO, 230 V c.a./6 V c.c.	4608000

Más información en www.hach-lange.es, ref. de búsqueda "STABL CAL", con descarga gratuita de folleto (DOC062.52.00222) y Manual de instrucciones (DOC022.98.00646)

Valoración in situ y en el laboratorio con el valorador digital

- → Listo para uso inmediato; con independencia de la red eléctrica
- → 40 métodos disponibles
- → Manejo sencillo
- → Resultados fiables
- → Accesorios completos

Sin bureta de vidrio - valoración manual

El valorador digital es un dispensador preciso en el que pueden insertarse cartuchos compactos con valorante concentrado. El valorante se añade girando el botón. Cuando el color vira, el volumen añadido se puede leer directamente y usar para calcular el resultado. El valorador digital puede sujetarse con la mano o en un soporte de laboratorio.

Totalmente equipado para 40 métodos

Hay disponibles valorantes específicos del parámetro para más de 40 métodos, en cartuchos resellables fáciles de cambiar, cada uno de los cuales sirve para 50 a 100 valoraciones.

En el maletín de transporte todo está a mano: el valorador digital, los cartuchos, las soluciones patrón y los tubos distribuidores.

Tomar la decisión correcta in situ

La valoración es un método analítico extensamente utilizado, p. ej. para el agua de refrigeración y el agua de calderas. Además de en el laboratorio, es muy utilizada in situ, donde rapidez y simplicidad son esenciales. El valorador digital y sus prácticos accesorios suministran datos fiables rápida y fácilmente, como ayuda para tomar las decisiones correctas.

1.000 mg/l 150 mg/l .000 mg/l - 2.500 mg/l

Ref. *	1690001		
PARÁMETRO	RANGOS DE MEDIDA	PARÁMETRO	RANGOS DE
Acidez	10 – 4.000 mg/l	Dureza (Ca)	1 – 200 °dH
Ácido/Base	1 – 4.000 mg/l	Dureza (total)	1 – 200 °dH
Ácidos orgánicos	100 – 2.400 mg/l	Hierro	10 – 1.000 mg
Alcalinidad	10 – 4.000 mg/l	Hipoclorito	50 – 150 mg/l
Cloro (libre)	0 – 3 mg/l	Inhibidores	0 – 1.000 mg/
Cloro (total)	0 – 70.000 mg/l	Nitrito	100 – 2.500 m
Cloruro	2,5 – 10.000 mg/l	Oxígeno	1-100 mg/l
Cromato	20 – 400 mg/l	Salinidad	0 – 100 ppt
Dióxido de carbono	10 – 1.000 mg/l	Sulfito	0 – 800 mg/l

- *Valorador digital y accesorios en un maletín; resolución 800 dígitos/ml (1,25 µl/dígito); precisión ± 1%
- → Juegos de test con cartuchos e indicadores de color para el valorador digital: véanse las páginas 52-53

Accesorios I: Cubetas para fotómetros de laboratorio

~\$30/454 CD\$5/454 CD\$50 10, CD\$50 CD\$50

		~		, T		7	
PRODUCTO	DESCRIPCIÓN		FOT	ÓME	TRO		REF.
Cubetas circulares	13 (externo)–11 (interno) mm, 25/pack, con tapón de goma	•	•	•	•	•	LCW906
Cubeta de flujo	10 mm, vidrio óptico especial		•		•	•	LZP334
Cubeta de flujo	10 mm, vidrio de cuarzo		•			•	LZP168
Cubeta de flujo	50 mm, vidrio óptico especial		•		•	•	LZP335
Cubeta de flujo	50 mm, vidrio de cuarzo		•			•	LZP336
Semi-microcubeta	50 mm, vidrio óptico especial	•		•	•	•	LZP269
Semi-microcubeta	50 mm, vidrio óptico especial, ennegrecido		•				LZP169
Semi-microcubetas de plástico	50 mm, con tapón, 10/pack	•	•	•	•	•	LZP341
Cubetas de plástico	10 mm, 1.000/pack	•	•	•	•	•	EBK019
Cubeta rectangular	10 mm, vidrio óptico especial, 3/pack	•	•	•	•	•	LZP045
Cubeta rectangular	10 mm, vidrio de cuarzo		•			•	LZP332
Cubeta rectangular	20 mm, vidrio óptico especial	•	•	•		•	LZP331
Cubeta rectangular	20 mm, vidrio de cuarzo		•			•	LZV008
Cubeta rectangular	50 mm, vidrio óptico especial	•	•	•	•	•	LZP167
Cubeta rectangular	50 mm, vidrio de cuarzo		•			•	LZP333
Cubeta rectangular	1 pulgada, emparejadas, de vidrio, 10 ml	•	•	•	•	•	2495402
Cubeta rectangular	10 mm, emparejadas, de vidrio, 3,5 ml				•	•	2095100
Cubeta circular	1 pulgada, de vidrio, 10 ml, con tapón				•	•	2122800
Cubetas circulares	1 pulgada, de vidrio, 10 ml, con tapón, 6/pack				•	•	2427606
Microcubetas rectangulares desechables	the state of the s				•	•	2629500
Cubeta rectangular	50 mm, de vidrio, 17,5 ml	•	•	•	•	•	2629250
Cubeta rectangular	50 mm, de vidrio de cuarzo, 17,5 ml		•			•	2624450
Cubeta de flujo, rectangular	1 pulgada, para kit de sistema por flujo 5940400				•	•	5913700
Cubetas rectangulares	1 pulgada, emparejadas, de vidrio, 25 ml				•	•	2665902
Cubetas rectangulares	1 pulgada, emparejadas, de vidrio, 25 ml, con tapón				•	•	2612602
Cubetas rectangulares desechables	1 pulgada, de poliestireno, con tapón, 12/pack				•	•	2410212
Cubetas circulares	1 pulgada, de vidrio, 25 ml, con tapón, 6/pack				•	•	2401906
Cubetas circulares	1 pulgada, de plástico, con tapón, 6/pack				•	•	5940506
Cubetas circulares de plástico	1 pulgada, con ventana de medida para camino óptico de 10 mm, 2/pack				•	•	4864302
Cubeta rectangular	10 mm, de vidrio de cuarzo, 3,5 ml, espectro 170-2.700 nm		•			•	2624410
Cubeta de flujo, rectangular	10 mm, de vidrio de cuarzo, 160 μl		•			•	A24209
Cubeta de flujo, rectangular	10 mm, de vidrio de cuarzo, 450 μl		•			•	LZV510
Cubeta de flujo, rectangular	50 mm, de vidrio de cuarzo, 370 μl		•			•	LZV649
Cubeta de flujo, rectangular	3 mm, de vidrio de cuarzo, 100 μl		•			•	LZV638

[→] Más información acerca de los fotómetros de laboratorio DR 2800, DR 5000 y XION: véanse las páginas 34-37

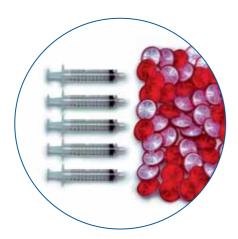
WW

Bloque termostático de alta temperatura HT 200S

Perfectamente adaptado a los sistemas de medida **HACH LANGE**

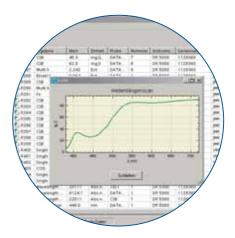
Tanto para las digestiones estándar como para las personalizadas, el LT 200 es el complemento ideal de las estaciones de medida fotométricas. Disponible como bloque único o doble con diferentes compartimentos para cubetas circulares y tubos de reacción. Se distingue por su fácil manejo, gran flexibilidad de programación y funcionamiento fiable.

El HT 200S - para digestiones altamente eficaces


En sólo unos minutos, el bloque termostático HT 200S se calienta hasta 170 °C y se vuelve a enfriar de forma activa; así se ahorra un valioso tiempo de trabajo durante y después de la digestión. Con la ayuda del HT 200S, los resultados p. ej. DQO – pueden obtenerse en 35 minutos.

Especificaciones técnicas

	DECONDOIÓN	DEE
	DESCRIPCIÓN	REF.
Termostato	Con compartimentos de 13 y 20 mm de diámetro, programado para 40, 100, 148 °C;	
LT 200	libre selección: 37 a 150 °C, tiempo de digestión: 1-480 minutos;	
	tiempo de calentamiento de 20 a 148 °C: 10 minutos ± 1 °C conforme a EN, ISO, EPA	
	1 bloque calefactor con 11 compartimentos: 9 de 13 mm de diámetro, 2 de 20 mm de diámetro	LTV082.99.10000
	2 bloques calefactores con 25 compartimentos: 21 de 13 mm de diámetro, 4 de 20 mm de diámetro	LTV082.99.21000
	2 bloques calefactores con 30 compartimentos: 30 de 13 mm de diámetro	LTV082.99.23000
	2 bloques calefactores con 20 compartimentos: 12 de 13 mm de diámetro, 8 de 20 mm de diámetro	LTV082.99.51000
Termostato	Con compartimentos de 16 y 20 mm de diámetro, programado para 100, 105, 150, 165 °C;	
ORB 200	libre selección: 37 a 165 °C, tiempo de digestión: 1-480 minutos;	
	tiempo de calentamiento de 20 a 150 °C: 10 minutos ± 1 °C conforme a EN, ISO, EPA	
	1 bloque calefactor con 11 compartimentos: 9 de 16 mm de diámetro, 2 de 20 mm de diámetro	LTV082.99.30001
	1 bloque calefactor con 15 compartimentos: 15 de 16 mm de diámetro	LTV082.99.40001
	2 bloques calefactores con 25 compartimentos: 21 de 16 mm de diámetro, 4 de 20 mm de diámetro	LTV082.99.42001
	2 bloques calefactores con 30 compartimentos: 30 de 16 mm de diámetro	LTV082.99.44001
ermostato	1 bloque calefactor con 12 compartimentos de 20/13 mm de diámetro;	LTV077
HT 200S	Para ahorrar tiempo con una digestión de 15 minutos para DQO, nitrógeno total, fosfato y metales	
le alta temperatura	pesados; fase de calentamiento: máx. 8 minutos; enfriamiento activo de muestras: máx. 13 minutos;	
	tres programas estándar (100 °C/148 °C/alta temperatura) y nueve programas libremente	
	seleccionables: indicación digital de tiempo (5-240 minutos) y temperatura (40 a 150 °C)	


Accesorios III: Preparación de muestras, pipetas y mucho más

Preparación de muestras específica para los test

Pipetas de émbolo variables; dosificación flexible y exacta para todos los test

Programa para la transferencia de datos del instrumento de medida al PC

Accesorios de HACH LANGE

PRODUCTO	DESCRIPCIÓN	REF.
Set de eliminación	Eliminación de cloruros, para evitar interferencias, p. ej. para el análisis de nitratos	LCW925
Set de filtración 1,2 µm	Por membrana; consta de 50 membranas filtr. especiales (1,2 µm) y jeringa desechable (10 ml)	LCW904
Set de filtración por membrana	Consta de 50 membranas de filtro especiales (0,45 µm) y jeringa desechable (10 ml)	LCW916
0,45 μm		
CRACK SET	Para la digestión de metales complejos, coloidales o sin disolver	LCW902
Tubos de reacción	Con cierre roscado; paquete de 5 unidades	LZP065
Dispensador de polvo	Para los test de TOC LCK 380/381, test de cloro LCW 510 de LANGE	LCW912
Tests de "screening"	Para la detección de acomplejantes orgánicos interferentes	LCW907
SwifTest	Dispensador para el test de cloro libre de HACH	2802300
SwifTest	Dispensador para el test de cloro total de HACH	2802400
Tiras test cloruro	(300 – 6.000 mg/l) para detectar interferencias en los tests DQO/nitrato	2751340
Agitador magnético de laboratorio	0–1.500 r.p.m. para homogenización y para enriquecimiento de AOX	LYW977
Imanes magnéticos	3 imanes para agitador magnético de laboratorio LYW977	LYW064
Agitador TOC-X5	Combinación de agitador/ventilador para la purga acelerada de carbono inorgánico	LQV148.99.
	para cubetas-test de TOC LCK385/386/387	00001
Pipeta electrónica	0,2-5,0 ml	BBP087
Pipeta de émbolo	0,2–1,0 ml	BBP078
Pipeta de émbolo	1,0–5,0 ml	BBP065
Puntas de pipeta	Para pipeta de émbolo (0,2–1,0 ml)	BBP079
Puntas de pipeta	Para pipeta de émbolo (1,0-5,0 ml) y pipeta electrónica BBP087	BBP068
Set de chequeo de pipetas	Para comprobar las pipetas BBP078/065/164/087 (para 4 determinaciones)	LCA722
Soporte de cubetas	Para 16 cubetas circulares (13 mm) LANGE o cubetas rectangulares (10 mm)	LYW915
Temporizador digital de laboratorio	Con precisión de seg., para periodos cortos (0 – 24 h), con pinza e imán	LZC902
Gafas protectoras	Uvex, verde/morado, según DIN 58211	EZZ042
Set de cubetas de color	Para comprobar la precisión fotométrica de los foto-espectrofotómetros	LZP181
Set de filtros de prueba	Para comprobar los fotómetros DR 2800 y DR 5000	LZV537
HACH LINK	Programa para transferir datos de los fotómetros de HACH a un PC por medio de interfaz	4966500
HACH DATATRANS	Programa para transferir datos de los fotómetros DR 2800 y DR 5000 a un PC por medio de	LZY274
	interfaz USB; idiomas: alemán/inglés/francés/italiano/español; completo con CD, cable, manual	

- → Información completa acerca de los productos de aseguramiento de la calidad: véase la página 66
- → Màs accesorios: véase www.hach-lange.es

Accesorios IV: Documentación de datos

Transferencia de datos sencilla utilizando la tecnología USB

Impresora térmica compacta para la documentación en el lugar de la medición

El escáner de códigos de barras externo puede conectarse directamente

Tecnología USB – la forma sencilla y avanzada de intercambiar datos

La tecnología USB ha simplificado sobremanera el intercambio de datos entre los sistemas. Los puertos USB son ahora también una característica de los espectrofotómetros DR 2800 y DR 5000; hacen que el proceso de los datos analíticos sea mucho más sencillo. Puertos USB la memoria USB se emplean tanto para transferir los valores medidos, p. ej., a LIMS como para descargar las actualizaciones de los fotómetros con mayor facilidad y fiabilidad que nunca.

→ Más información acerca de los espectrofotómetros DR 2800 y DR 5000: véanse las páginas 34–36

Resultados definitivos

No siempre se tiene un ordenador (PC) al lado del instrumento de medición o puede que en el laboratorio no haya espacio suficiente para una impresora convencional.

En estos casos, las impresoras compactas que ocupan poco sitio permiten documentar los resultados directamente junto al instrumento.

Escaneado instantáneo para identificar las muestras

Los fotómetros de laboratorio DR 2800, DR 5000, LICO, CADAS y XION permiten identificar las muestras automáticamente a partir de sus códigos de barras. El escáner de códigos de barras externo se conecta al fotómetro; reconoce de forma automática los códigos de barras standards e individuales.

→ Más información acerca de los espectrofotómetros DR 2800, DR 5000 y XION: véanse las páginas 34–37

Especificaciones técnicas e información para la formulación de pedidos

-	·	
DESCRIPCIÓN		REF.
Impresora de chorro de tinta USB	HP DeskJet 6540 para los fotómetros DR 2800 y DR 5000 (papel DIN A4)	LYW368
Impresora de valores medidos	Para todos los instrumentos actuales de HACH	A70P020
Impresora de valores medidos DPU414, paralelo	Impresora térmica con cable paralelo para los fotómetros XION y GANIMEDE	LQV144.99.00000
Impresora de valores medidos DPU414, serie	Impresora térmica con cable serie para los fotómetros LICO y LASA	LQV144.99.10000
Papel para impresora, set de 3 rollos	Para impresora de valores medidos DPU414	LZP180
Escáner de códigos de barras, serie	Para los fotómetros XION, CADAS y LICO	LZV261
Escáner de códigos de barras, USB	Para los fotómetros DR 2800 y DR 5000	LZV566
Teclado compacto	Para interfaz USB (teclado distribución inglesa)	LZV582
Memoria USB	Dispositivo de 128 MB de memoria, para transferencia de datos	LZV568
Cambiador de muestras para	Con carrusel de muestras de 36 x 30 ml, lavado automático de la aguja	LQV134.00.30000
analizador automático de laboratorio GANIMEDE	Con carrusel de muestras de 53 x 15 ml, lavado automático de la aguja	LQV134.00.40000
Software adicional para espectrofotómetro	Análisis según MEBAK en fábricas de cerveza, software de aplicación	LZV570
DR 5000	Análisis del agua potable, software de aplicación	LZV571

PW

WW

Accesorios V: Detectores de gases, microscopios, balanzas

Portátiles – las balanzas ACCULAB VICON de SARTORIUS

Sensible – el detector de múltiples gases GFG POLYTECTOR G 750 con 6 sensores

Accesorios destinados al análisis - una selección

REF.	NOMBRE	DESCRIPCIÓN
SM12403X	Detector de gases GFG POLYTECTOR G 750	 Detector de múltiples gases, de 6 sensores, ligero y compacto, con funciones de alarma y visualización simultánea de todos los riesgos de gases medidos; rango de medida disponible para gases combustibles 0-100% vol., aprobado por ATEX Sistema de módulos cambiables para un ajuste fácil a nuevos riesgos de gases Los sensores inteligentes, p. ej. de O₂, H₂S, CO₂ infrarrojo, CH₄, se conectan fácilmente y son reconocidos al instante, junto con sus ajustes, por el medidor Alarma acústica (90 dB, 30 cm); alarma óptica en LED grande bien visible Fácil de manejar; sólo una tecla en el modo normal Dimensiones: 90 x 210 x 60 mm, aprox. 770 g
SM1349-0001	Microscopio LEICA CME	Microscopio básico de laboratorio con excelente calidad de imagen, diseño robusto y extensa gama de accesorios: componentes ópticos todo vidrio, condensador deslizante NA 1,25 estándar en especial para aplicaciones de contraste de fases, p. ej. lodos de la depuración de aguas residuales, así como para aplicaciones de inmersión en aceite y de campo oscuro
SM0881108	Microscopio LEICA DME	Potente microscopio de laboratorio para reproducción de imágenes de gran contraste, brillantes, con condensador universal y objetivos de contraste de fases HI PLAN para alto contraste, buen aplanamiento de la imagen y corrección cromática; muchas posibilidades de mejora
SM11888133-0001	Microscopio LEICA DM 1000	Potente microscopio de laboratorio para máximos niveles de brillo óptico y ergonomía, ideal para laboratorios bacteriológicos, también de gran producción; con condensador y objetivos de contraste de fases HI PLAN, puede equiparse con eje fluorescente
SM3240303	Balanzas de laboratorio ACCULAB	Con pantalla LCD iluminada, capacidad 300 g, resolución 0,001 g
SMTE313S	Balanza SARTORIUS TE313S	Balanza de precisión, electrónica, con pantalla de 7 segmentos, reconocimiento de estabilidad y 4 niveles de filtración seleccionables, interfaz RS-232-C; como opción, documentación conforme a ISO/GLP; capacidad 310 g, resolución 0,001 g
SM324035M	Analizador de humedad SARTORIUS MA35M	Medidor compacto para la determinación totalmente automática del contenido de humedad o sólidos secos totales; tiempo de medida más corto a partir de un peso de muestra inicial de 1,0 g, precisión \pm 0,2% (muestra $<$ 5 g) o \pm 0,05% (muestra $>$ 5 g), capacidad 35 g con una resolución de 1 mg, método de determinación totalmente automático o con tiempo prefijado de 0,1–99 min
SM324045Q	Analizador de humedad SARTORIUS MA45Q	Véase el anterior, salvo la capacidad de 45 g con una resolución de 1 mg, método de determinación totalmente automático, semiautomático 1-20 mg/24 seg o con tiempo prefijado de 0,1-99 min

- → Una "X" en la Ref. de pedido indica que existen diferentes configuraciones
- → Más información acerca de detectores de gases, microscopios, balanzas, termómetros y otros accesorios destinados al análisis, bajo solicitud

Analítica automatizada para muestras individuales y series de muestras

→ Análisis de laboratorio: véanse los Capítulos 2-8 → Tomamuestras: véase el Capítulo 10 → Sistemas de control de proceso: véanse los Capítulos 11-20

Cuando se tienen que medir cada vez más muestras sin contratar personal adicional ni ampliar el laboratorio, la solución es la automatización. Esto sirve tanto para los laboratorios de agua potable como para el control de calidad industrial, para grandes E.D.A.R. y para instalaciones de galvanoplastia, así como para los sectores alimentario, farmacéutico y petroquímico. HACH LANGE puede proporcionarle soluciones adecuadas para diferentes métodos y parámetros.

Analizador de TOC/TN con un rango de medida sumamente amplio: → Véase la página 84

Sistemas de valoración TITRALAB ahora con RFID – para una trazabilidad fácil y fiable conforme a GLP:

→ Véase la página 86

→ Véase la página 88

Analizadores de TOC-TN – Robustos, fiables, muy precisos

- → Variables: TOC con digestión de alta temperatura o digestión UV
- → Eficaces: determinación de TOC y TN conforme a la norma, de forma simultánea
- → Flexibles: análisis de TOC y sólidos en dos variantes; para series de muestras y muestras individuales
- → Versátiles: apropiados para una extensa gama de aplicaciones de aguas residuales, aguas potables, aguas de proceso y control de calidad, gracias a un amplio rango de medida dinámico

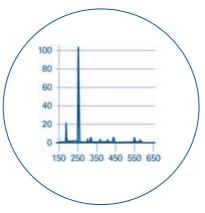
El puerto neumático corresponde al test de partículas según ISO 8254 y DIN EN 1484

La puerta al resultado correcto

TOC y TN, líquidos y sólidos, muestras que contienen partículas y sal – ninguno es un problema para el analizador IL 550 TOC-TN. La inyección directa se realiza sin septo, sin tubos ni válvulas, a través del puerto neumático, que encierra herméticamente la jeringa. El calentamiento al que la aguja es sometida durante el análisis asegura la no existencia de arrastres de muestra. El volumen de inyección variable permite realizar la calibración dependiendo del volumen, sin necesidad de la larga preparación de diferentes patrones.

Digestión completa

La inyección directa con una aguja de 700 µm garantiza una excelente tolerancia a las partículas. La temperatura de 950 °C del horno y la óptima composición del embalaje del catalizador facilitan la completa oxidación de las muestras que contienen partículas y de las sustancias difícilmente digeribles. La larga vida útil del catalizador está garantizada incluso cuando se trata de muestras agresivas.


9

WW

Sumamente sensible: TOC con digestión UV por persulfato

El analizador IL 500 TOC es especialmente apropiado para trabajar en el rango de medida bajo, donde se inyectan muestras de hasta 20 ml. El instrumento tiene unos requisitos de mantenimiento excepcionalmente bajos, funciona sin catalizador y origina unos gastos de explotación mínimos. Durante la digestión UV, el contacto directo entre la muestra y la fuente UV asegura una oxidación eficaz con una recuperación y reproducibilidad excelentes. Si hay conectado un tomamuestras automático, la tecnología de doble aguja permite llevar a cabo la purga y la medida de forma simultánea, ahorrando tiempo.

Alta energía – digestión UV en 187 y 254 nm

Vista de conjunto de los analizadores TOC-TN

_			
TIPO DE INSTRUMENTO	IL 550 TOC-TN	IL 530 TOC-TN	IL 500 TOC
Rango de medida de TOC	0,05-30.000 mg/l	0,2-30.000 mg/l	0,002-10.000 mg/l
(NDIR - Infrarrojo no dispersivo)			
Rango de medida de TN (CLD o ECD)	0,1-100 mg/l	0,1-100 mg/l	
Método	Digestión de alta	Digestión de alta	Digestión UV
	temperatura hasta 950 °C	temperatura hasta 950 °C	por persulfato
Parámetros TC/TOC/NPOC/TIC,	•	•	•
método de diferencia o método de purga			
Optimización de la señal mediante VITA	•		
Introducción de la muestra	Inyección directa	Inyección mediante septo	Inyección por flujo
Módulo de sólidos DFS 950 (950 °C)	Opcional	Opcional	
Módulo de sólidos HSC 1300 (1.300 °C)	Opcional	Opcional	
Medida simultánea de TOC y TN	Opcional	Opcional	
Funcionamiento con tomamuestras automático	Opcional	Opcional	Opcional
Agitación en la posición actual de la muestra	•	•	
Purga y medida simultáneas para			•
la determinación de NPOC			
Dimensiones de TOC básico (Alt. x Anch. x Prof.)	512 x 540 x 530 mm	512 x 540 x 530 mm	512 x 492 x 464 mm

[→] Accesorios para analizadores de TOC-TN, bajo solicitud

TITRALAB – Valoración automática para muestras individuales y series de muestras

- → Tecnología RFID para la trazabilidad automática fiable de los reactivos según GLP
- → Fácil cambio de la bureta a mano
- → Rápido cambio del valorante con un tiempo mínimo de enjuague
- → Manejo intuitivo mediante menús autoexplicativos y sencilla programación de métodos por medio de una pantalla grande

En sólo unos segundos se puede desmontar el soporte de buretas completo (con la bureta y los elementos conductores de valorante), acoplar a la botella de reactivo para ahorrar espacio y guardar en el estante

Los nuevos sistemas de valoración con tecnología RFID sin cables

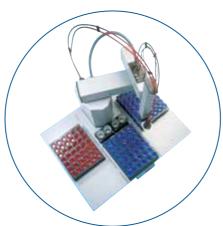
Ahora es más fácil que nunca ser 100% fiable. Sin cables y sin contacto, el sistema identifica automáticamente la bureta introducida, con todos los datos necesarios: nombre de reactivo, primer uso, última calibración, etc. La fiabilidad de los valores medidos y la trazabilidad de los reactivos pueden simplificarse sobremanera con la técnica RFID. El cambio de los valorantes incluye los elementos conductores, evitando de este modo toda posibilidad de contaminación y eliminando el proceso de enjuague.

Comenzar inmediatamente – con sistemas de valoración completos para:

Alimentos y bebidas

- Contenido total de ácido: vino, vinagre, zumos de frutas, leche
- Cloruro: leche, mantequilla, otros productos lácteos
- Ácido ascórbico: zumos de frutas, alimentos
- SO₂ libre y total: vino, zumos de frutas

Medio ambiente y agua


- pH y alcalinidad
- Dureza total
- Cloruro
- DQO

Productos químicos y galvanoplastia

- Determinación ácido-base en medios acuosos y no acuosos
- Determinaciones complejométricas
- TAN [Total Acid Number] TBN [Total Base Number]
- Índice de bromo y número de bromo según ASTM D1491, D7210
- Sulfuro de hidrógeno y mercaptanos conforme a ASTM D3227

9

Amplia variedad de electrodos para sistemas de valoración completos

Con más de 60 años de experiencia en fabricación, RADIOMETER ANALYTICAL representa una calidad de electrodos excepcional. La singular tecnología RED ROD (véase Figura arriba) garantiza tiempos de respuesta rápidos y resultados exactos y reproducibles a largo plazo.

Accesorios para costes bajos y un alto rendimiento de muestras

El cambiador de muestras SAC90 (véase Figura arriba) procesa hasta 126 muestras – día y noche. Para evitar toda contaminación, los electrodos se trasladan al vaso de lavado por una vía segura, pasando sólo sobre muestras ya valoradas. El programa para PC TITRAMASTER 85 visualiza y administra los datos de hasta siete valoradores.

Valoración volumétrica Karl Fischer para el análisis de aguas

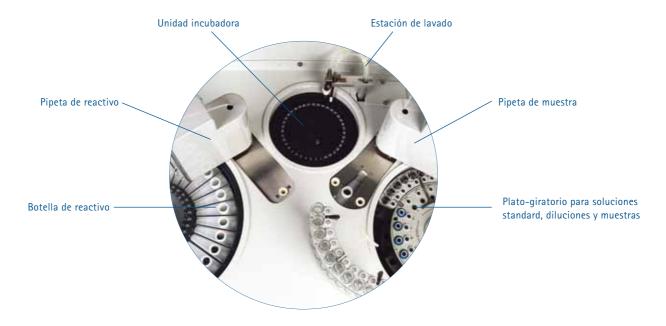
Existen estaciones de medida Karl Fischer completas disponibles por separado (TITRALAB 55) o combinadas con un valorador potenciométrico (TITRALAB 980); en ambos casos, la bureta de alta resolución garantiza unos resultados de medida seguros y fiables con muestras sólidas y líquidas.

Vista en conjunto de la familia TITRALAB

TITRALAB	840/845	854/856	865	870	960/965	980	55	
Buretas	Buretas							
Número de buretas	1/2	1/2	2	2	1/2	2	1	
Buretas adicionales			4 con 2 dobl	es buretas ABU	52 o ABU 62			
Buretas intercambiables con					•	•		
identificación RFID								
Técnicas								
Medidas de pH/mV	•	•	•	•	•	•		
Valoración de punto final	•	•	•	•	•	•		
Valoración de punto de inflexión	•		•	•	•	•		
Valoración de pH-stat		•						
Valoración volumétrica Karl Fischer						•	•	
Medidas de conductividad				•				
Medidas ISE				•				
Técnicas de adición de valorante								
Dinámica continua	•	•	•	•	•	•		
Monótona y dinámica incremental	•		•	•	•	•	•	
Periféricos		То	mamuestras, bal	anza, impresora	, software para F	C		
Entradas de electrodo para								
Electrodos indicadores	1			2			1	
Electrodos de referencia		1						
Electrodo polarizado				1				

Más información en www.hach-lange.es, ref. de búsqueda "TITRALAB", con descarga gratuita de folletos y Manual de instrucciones, así como información acerca de la formulación de pedidos de estaciones de medida TITRALAB, reactivos y electrodos

→ En algunos países, estos sistemas son distribuidos por colaboradores especializados. En HACH LANGE le ampliaremos información al respecto


DW

Analizador AP 300 DISCRETE – Analítica de iones compacta

- → Uso flexible: varios parámetros por muestra simultáneamente
- → Consumo económico: volúmenes pequeños de reactivo, de 10 a 300 µl
- → Manejo sencillo: guía intuitiva mediante menús y métodos preprogramados
- → Alta frecuencia de medida: hasta 300 test por hora
- → Resultados fiables mediante sistema de doble pipeta

AP 300 DISCRETE: analizador de iones totalmente automático para análisis medioambientales, complementado con reactivos de gran calidad listos para usar

Reactivos listos para usar para el analizador AP 300 DISCRETE

PARÁMETRO	RANGO DE MEDIDA	MÉTODO	N° DE MÉTODO	REF.
Amonio, muestras no	0,03-2,00 mg/l	Berthelot	D-10-107-06-1-A	52921
estabilizadas con ácido	1,00-20,0 mg/l			
Amonio, muestras estabilizadas	0,03-2,00 mg/l	Berthelot	D-10-107-06-1-B	52918
con ácido	1,00-20,0 mg/l			
Cloruro	1,00-50,0 mg/l	Tiocianato	D-10-117-07-1-A	52926
	25,0-300 mg/l			
Cianuro	0,02-0,50 mg/l	Ácido piridinbarbitúrico	D-10-204-00-1-A	52925
Nitrato, nitrito	0,75-20,0 mg/l	Sulfanilamida	D-10-107-04-1-A	52920
Nitrato, nitrito	0,04-0,75 mg/l	Sulfanilamida	D-10-107-04-1-B	52919
Fósforo, orto	0,10-2,00 mg/l	Molibdato	D-10-115-01-1-A	52923
	0,015-1,00 mg/l			

WW DW

PW

Proceso eficaz de grandes cantidades de muestras con FIA - QUICKCHEM 8500

- → Ahorro de tiempo gracias a reactivos específicos preparados
- → Inmediatamente listo para usar con un tiempo de puesta en marcha mínimo
- → Cambio de método en tan solo unos minutos
- → Eliminación automática de burbujas de gas en la muestra
- → Función de alarma para fugas
- → Software en varios idiomas

Máxima productividad

La tecnología FIA que se usa para el SFA (análisis de flujo segmentado) ha demostrado ser un método analítico muy económico para los laboratorios de agua y medioambientales que procesan gran cantidad de muestras. Los amplios rangos de medida para muchos parámetros hacen de la FIA una herramienta analítica universal, particularmente para todo tipo de aguas. El QUICKCHEM 8500 es el resultado de veinte años de experiencia.

QUICKCHEM 8500 – análisis optimizado de inyección por flujo para 120 muestras por hora

Métodos QUICKCHEM sin preparación de muestras

PARÁMETRO	REACTIVOS	AGUA	AGUA DE	SUELO
	LISTOS	RESIDUAL,	MAR Y AGUA	
	PARA USAR	AGUA	SALOBRE	
		POTABLE		
Amonio	•	•	•	•
Nitrato	•	•	•	•
Nitrito	•	•	•	•
Cloruro	•	•		
Cromo		•		
Cianuro	•	•		
Sílice	•	•	•	
Aluminio	•	•		•
Hierro	•	•	•	
Manganeso		•	•	•
Fosfato	•	•	•	•
pH		•		

Métodos QUICKCHEM con preparación de muestras integrada*

•	
PARÁMETRO	MÉTODO DE DIGESTIÓN
Cianuro, inline	UV de alta temperatura
Fenol, inline	Difusión de gas, después condensación
Detergentes, aniónicos	Extracción única o doble con cloroformo
Nitrógeno total, inline	UV por persulfato
Fósforo total, inline	UV por persulfato
Sulfuro, inline	Destilación

- * Alternativa: preparación externa de muestras con el sistema de digestión MICRODIST – un bloque calefactor que puede alojar 21 tubos de digestión preparados. Más información, bajo solicitud
- → Más de 400 métodos normalizados y no normalizados disponibles. Manuales de los métodos (en inglés), bajo solicitud

Analizadores de laboratorio automáticos con digestión integrada – GANIMEDE P y TN

- → Resultados de P total y TN en cuestión de minutos
- → Digestión integrada rápida
- → Reactivos listos para usar
- → Unidad de control portátil
- → Fácil manejo

Uso flexible – con gestión de datos inteligente

El sistema GANIMEDE se compone de cambiador de muestras, unidad de control y unidad de análisis con digestión integrada para P o N. La unidad de control inalámbrica activa una o las dos unidades de análisis. Los datos de las muestras se recogen por medio del escáner de códigos de barras o un PC, y son procesados por la unidad de control.

Resultados fiables en cuestión de minutos – digestión rápida

El digestor de alta temperatura integrado (150 °C), dotado de enfriamiento rápido, proporciona resultados precisos en poco tiempo. Hasta los compuestos de fosfato o nitrógeno complejos pueden someterse a una digestión y proceso totales en 4 a 7 minutos de acuerdo con EN 1189 (fosfato) o ISO 11905-1 (nitrógeno).

Inmediatamente disponibles – reactivos GANI CHEM listos para

Las largas preparaciones de soluciones de reactivo han pasado ya a la historia. Los reactivos GANI CHEM fáciles de usar, de gran calidad, pueden emplearse para un máximo de 100 determinaciones. Los reactivos usados son eliminados de forma segura y adecuada por HACH LANGE.

Especificaciones técnicas de GANIMEDE P

Método de medición	De acuerdo a EN 1189
Rango de medida	0,01-3,8 mg/l PO ₄ -P
Repetibilidad	A 1 mg/l: ± 2 %
Longitud de onda	880 nm
de medición	
Calibración	En 2 puntos, autom., serie estándar opcional
Soporte portamuestras	36 x 30 ml y 53 x 15 ml
giratorio	
Interfaces	1 serie, 1 paralelo, 1 cambiador de muestras
Alimentación	230 V/50 Hz (opcional 110 V)
Pantalla color	14,48 cm (5,7 pulgadas); interfaz IR
Set de reactivos	GANI CHEM P para la determinación
	automática de fosfato rango de medida
	0,01-3,8 mg/l P, 100 test, Ref. GCA100

[→] Cambiador de muestras para GANIMEDE: véase la página 81; más accesorios, bajo solicitud

Especificaciones técnicas de GANIMEDE N

Método de medición	De acuerdo a EN ISO 11905-1
Rango de medida	0,5-150 mg/I TN
Repetibilidad	A 10 mg/l: ± 2 %
Longitud de onda	210 nm
de medición	
Calibración	En 2 puntos, autom., serie estándar opcional
Soporte portamuestras	36 x 30 ml
giratorio	
Interfaces	1 serie, 1 paralelo, 1 cambiador de muestras
Alimentación	230 V/50 Hz (opcional 110 V)
Pantalla color	14,48 cm (5,7 pulgadas); interfaz IR
Set de reactivos	GANI CHEM N para la determinación auto-
	mática de nitrógeno total, rango de medida 0,5-150 mg/l TN, 100 test, Ref. GCA200